zoukankan      html  css  js  c++  java
  • poj 2109Power of Cryptography

    Power of Cryptography
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 16102   Accepted: 8119

    Description

    Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest.
    This problem involves the efficient computation of integer roots of numbers.
    Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).

    Input

    The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10101 and there exists an integer k, 1<=k<=109 such that kn = p.

    Output

    For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

    Sample Input

    2 16
    3 27
    7 4357186184021382204544

    Sample Output

    4
    3
    1234

    Source

    大数相乘加二分
    #include<stdio.h>
    #include<string.h>
    int n,lena,lenb;
    int a[100000];
    int b[100000];
    int sum[100000];
    char c[100000];
    void dashu()
    {
         memset(sum,0,sizeof(sum));//相当于一个临时变量,每次都得更新,初始化为0
         int i,j;
         for(i=0;i<lena;i++)//大数相乘算法
         for(j=0;j<lenb;j++)
         sum[i+j]+=a[i]*b[j];//a不断累乘,b不变
         for(i=0;i<lena*2;i++)
         {
              if(sum[i]>=10)
              {
                   sum[i+1]+=sum[i]/10;
                   sum[i]%=10;
              }
         }
         for(i=lena*2;i>=0;i--)//计算a数组的长度
         {
              if(sum[i]!=0)
              {
                   lena=i+1;
                   break;
              }
         }
         for(i=0;i<lena;i++)//把sum数组的值赋给a;
         a[i]=sum[i];
    }
    int judge(int mid)
    {
         memset(a,0,sizeof(a));
         memset(b,0,sizeof(b));
      int i=0,j=0,len;
      while(mid!=0)//将其分离,用数组装
      {
           a[i++]=mid%10;
    
           b[j++]=a[i-1];
           mid/=10;
      }
    
      lena=i;
      lenb=i;
      for(i=0;i<n-1;i++)//进行n-1次乘法就行了
        dashu();
      if(lena>strlen(c))
      return 1;
      else if(lena<strlen(c))
      return -1;
      else//注意,当他们两的长度相同时,还要一个个比较
      {
           for(i=0;i<lena;i++)
           {
                if(c[i]-'0'!=a[lena-i-1])
                {
                     if(c[i]-'0'>a[lena-i-1])//该数比目标数小
                     return -1;
                     else
                     return 1;
                }
           }
      }
      return 0;//当返回0时说明这两个数相等
    }
    int main()
    {
    
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
         while(scanf("%d %s",&n,c)!=EOF)
         {
              int left=0;
              int right=100000000;
              int mid,ans=0;
              while(left<right)//k的范围为1到100000000二分就行了
              {
                   mid=(left+right)/2;
                  
                   ans=judge(mid);//判断函数
                   if(ans==1)//该数比目标数大,要变小,缩小范围
                   right=mid;
                   else if(ans==-1)//该数比目标数大,范围扩大
                   left=mid+1;
                   else if(ans==0)//找到,跳出
                   break;
              }
              printf("%d
    ",mid);
         }
         return 0;
    }

    不过这题有一个一行的神级代码pow(p,1.0/n);

    这样也能过,不过要用cout输出用printf的话就错了。

  • 相关阅读:
    Linux系统IP地址
    系统网络概述
    系统内存和CPU管理、监控
    系统磁盘资源
    Linux与DOS的常用命令比较
    傻瓜式破解linux--rootpassword
    【iOS】彩虹渐变色 的 Swift 实现
    Spring与Hibernate整合中,使用OpenSessionInViewFilter后出现sessionFactory未注入问题
    OpenCV Haar AdaBoost源代码改进(比EMCV快6倍)
    【Hibernate步步为营】--双向关联一对一映射具体解释(一)
  • 原文地址:https://www.cnblogs.com/llei1573/p/3216752.html
Copyright © 2011-2022 走看看