zoukankan      html  css  js  c++  java
  • UVA Summation of Four Primes

    Summation of Four Primes

    Input: standard input

    Output: standard output

    Time Limit: 4 seconds

    Euler proved in one of his classic theorems that prime numbers are infinite in number. But can every number be expressed as a summation of four positive primes? I don’t know the answer. May be you can help!!! I want your solution to be very efficient as I have a 386 machine at home. But the time limit specified above is for a Pentium III 800 machine. The definition of prime number for this problem is “A prime number is a positive number which has exactly two distinct integer factors”. As for example 37 is prime as it has exactly two distinct integer factors 37 and 1.

     

    Input

    The input contains one integer number N (N<=10000000) in every line. This is the number you will have to express as a summation of four primes. Input is terminated by end of file.

    Output

    For each line of input there is one line of output, which contains four prime numbers according to the given condition. If the number cannot be expressed as a summation of four prime numbers print the line “Impossible.” in a single line. There can be multiple solutions. Any good solution will be accepted.

     

    Sample Input:

    24
    36
    46

     

    Sample Output:

    3 11 3 7
    3 7 13 13
    11 11 17 7

    /*
    首先这里涉及哥德巴赫猜想
    即一个偶数可以拆成2个素数的和
    对于此题 此题是special judge
    所以任何可行解都可以 如果输入的是一个偶数 那么就拿出2个2 剩下的 n-4还是偶数 拆分这个偶数就行了
    对于奇数就拿出一个2 一个 3剩下的n-5还是偶数 拆分这个偶数就行了
    ps:n<8是一定不可以拆的
    */
    #include<stdio.h>
    #define N 10000005
    int vis[N];
    int prime[700000];
    int main()
    {
         int i,j,n,k;
         k=0;
         for(i=2;i<N;i++)//强大的素数筛选算法60多万的素数表
         {
              if(!vis[i])
              {
                   prime[k++]=i;
                   for(j=i+i;j<N;j+=i)  vis[j]=1;
              }
         }
         while(~scanf("%d",&n))
         {
              if(n<8) {printf("Impossible.
    ");continue;}
              if(n%2) {printf("2 3 ");n-=5;}
              else {printf("2 2 "); n-=4;}
              for(i=0;i<k;i++)
                   if(!vis[n-prime[i]])//n是偶数 prime[i]是素数n-prime[i]也是素数
              {
                   printf("%d %d
    ",prime[i],n-prime[i]);
                   break;
              }
         }
    
         return 0;
    }

  • 相关阅读:
    python学习第十一天 -- 函数式编程
    python学习第十天 -- 函数
    python学习第九天 -- 列表生产式
    python学习第八天 -- 迭代
    (转载)C# 编程 使用可空类型
    Func的介绍——c#封装的代理
    select SCOPE_IDENTITY()用法
    insert into 语句的三种写法
    面试感悟----一名3年工作经验的程序员应该具备的技能
    SQL中常用模糊查询的四种匹配模式&&正则表达式
  • 原文地址:https://www.cnblogs.com/llei1573/p/3302177.html
Copyright © 2011-2022 走看看