Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
题目大意:求m到n之间有多少个x,x满足 gcd(x,n)>=m,
用到欧拉函数。
思路:先求出 n 大于等于 m 的因子 i,再计算 n/i 的欧拉函数,最后相加即可
具体代码如下:
#include <stdio.h>
#include <iostream>
using namespace std;
int ol(int n)
{
int s=n,i,j;
for(i=2;i*i<=n;i++)
{
if(n%i==0)
{
while (!(n%i))
n/=i;
s=s/i*(i-1);
}
}
if(n!=1) s=s/n*(n-1);
return s;
}
int main()
{
int t,n,m,sum,i,j;
scanf("%d",&t);
while(t--)
{
sum=0;
scanf("%d%d",&n,&m);
for(i=1;i*i<=n;i++)
if(n%i==0)
{
if(i>=m)
sum+=ol(n/i);
if((n/i)!=i&&(n/i)>=m)
sum+=ol(i);
}
printf("%d
",sum);
}
return 0;
}