zoukankan      html  css  js  c++  java
  • SPOJ4491. Primes in GCD Table(gcd(a,b)=d素数,(1<=a<=n,1<=b<=m))加强版

    SPOJ4491. Primes in GCD Table

     

    Problem code: PGCD

     

    Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has created a GCD (greatest common divisor) table! So he now has a table (of height a and width b), indexed from (1,1) to (a,b), and with the value of field (i,j) equal to gcd(i,j). He wants to know how many times he has used prime numbers when writing the table.

    Input

    First, t ≤ 10, the number of test cases. Each test case consists of two integers, 1 ≤ a,b < 107.

    Output

    For each test case write one number - the number of prime numbers Johnny wrote in that test case.

    Example

    Input:
    2
    10 10
    100 100
    Output:
    30
    2791
     
     
     

     


    一样的题,仅仅只是 GCD(x,y) = 素数 .  1<=x<=a ; 1<=y<=b;

    链接:http://www.spoj.com/problems/PGCD/ 

    转载请注明出处:寻找&星空の孩子

     

    具体解释:http://download.csdn.net/detail/u010579068/9034969

     

     

     

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    
    const int maxn=1e7+5;
    typedef long long LL;
    LL pri[maxn],pnum;
    LL mu[maxn];
    LL g[maxn];
    LL sum[maxn];
    bool vis[maxn];
    
    void mobius(int N)
    {
        LL i,j;
        pnum=0;
        memset(vis,false,sizeof(vis));
        vis[1]=true;
        mu[1]=1;
        for(i=2; i<=N; i++)
        {
            if(!vis[i])//pri
            {
                pri[pnum++]=i;
                mu[i]=-1;
                g[i]=1;
            }
            for(j=0; j<pnum && i*pri[j]<=N ; j++)
            {
                vis[i*pri[j]]=true;
                if(i%pri[j])
                {
                    mu[i*pri[j]]=-mu[i];
                    g[i*pri[j]]=mu[i]-g[i];
                }
                else
                {
                    mu[i*pri[j]]=0;
                    g[i*pri[j]]=mu[i];
                    break;//think...
                }
            }
        }
        sum[0]=0;
        for(i=1; i<=N; i++)
        {
            sum[i]=sum[i-1]+g[i];
        }
    }
    int main()
    {
        mobius(10000000);
        int T;
        scanf("%d",&T);
        while(T--)
        {
            LL n,m;
            scanf("%lld%lld",&n,&m);
            if(n>m) swap(n,m);
            LL t,last,ans=0;
            for(t=1;t<=n;t=last+1)
            {
                last = min(n/(n/t),m/(m/t));
                ans += (n/t)*(m/t)*(sum[last]-sum[t-1]);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    


     

  • 相关阅读:
    工厂模式
    将博客搬至CSDN
    网络安全-跨站脚本攻击XSS(Cross-Site Scripting)
    Linux 权限
    git常用的语句
    git代码提交与克隆
    git学习
    Mybatis常见问题
    关于集合常见的问题
    远程连接(加密验证问题解决)
  • 原文地址:https://www.cnblogs.com/llguanli/p/7259425.html
Copyright © 2011-2022 走看看