zoukankan      html  css  js  c++  java
  • opencv源代码之中的一个:cvboost.cpp

    我使用的是opencv2.4.9。安装后。我的cvboost..cpp文件的路径是........opencvsourcesappshaartrainingcvboost.cpp。研究源代码那么多天,有非常多收获。opencv库真是非常强大。

    详细内容例如以下:

    /*M///////////////////////////////////////////////////////////////////////////////////////
    //
    //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
    //
    //  By downloading, copying, installing or using the software you agree to this license.
    //  If you do not agree to this license, do not download, install,
    //  copy or use the software.
    //
    //
    //                        Intel License Agreement
    //                For Open Source Computer Vision Library
    //
    // Copyright (C) 2000, Intel Corporation, all rights reserved.
    // Third party copyrights are property of their respective owners.
    //
    // Redistribution and use in source and binary forms, with or without modification,
    // are permitted provided that the following conditions are met:
    //
    //   * Redistribution's of source code must retain the above copyright notice,
    //     this list of conditions and the following disclaimer.
    //
    //   * Redistribution's in binary form must reproduce the above copyright notice,
    //     this list of conditions and the following disclaimer in the documentation
    //     and/or other materials provided with the distribution.
    //
    //   * The name of Intel Corporation may not be used to endorse or promote products
    //     derived from this software without specific prior written permission.
    //
    // This software is provided by the copyright holders and contributors "as is" and
    // any express or implied warranties, including, but not limited to, the implied
    // warranties of merchantability and fitness for a particular purpose are disclaimed.
    // In no event shall the Intel Corporation or contributors be liable for any direct,
    // indirect, incidental, special, exemplary, or consequential damages
    // (including, but not limited to, procurement of substitute goods or services;
    // loss of use, data, or profits; or business interruption) however caused
    // and on any theory of liability, whether in contract, strict liability,
    // or tort (including negligence or otherwise) arising in any way out of
    // the use of this software, even if advised of the possibility of such damage.
    //
    //M*/
    
    #ifdef HAVE_CVCONFIG_H
      #include "cvconfig.h"
    #endif
    
    #ifdef HAVE_MALLOC_H
      #include <malloc.h>
    #endif
    
    #ifdef HAVE_MEMORY_H
      #include <memory.h>
    #endif
    
    #ifdef _OPENMP
      #include <omp.h>
    #endif /* _OPENMP */
    
    #include <cstdio>
    #include <cfloat>
    #include <cmath>
    #include <ctime>
    #include <climits>
    
    #include "_cvcommon.h"
    #include "cvclassifier.h"
    
    #ifdef _OPENMP
    #include "omp.h"
    #endif
    
    #define CV_BOOST_IMPL
    
    typedef struct CvValArray
    {
        uchar* data;
        size_t step;
    } CvValArray;
    
    #define CMP_VALUES( idx1, idx2 )                                 
        ( *( (float*) (aux->data + ((int) (idx1)) * aux->step ) ) <  
          *( (float*) (aux->data + ((int) (idx2)) * aux->step ) ) )
    
    static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_16s, short, CMP_VALUES, CvValArray* )
    
    static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_32s, int,   CMP_VALUES, CvValArray* )
    
    static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_32f, float, CMP_VALUES, CvValArray* )
    
    CV_BOOST_IMPL
    void cvGetSortedIndices( CvMat* val, CvMat* idx, int sortcols )
    {
        int idxtype = 0;
        size_t istep = 0;
        size_t jstep = 0;
    
        int i = 0;
        int j = 0;
    
        CvValArray va;
    
        CV_Assert( idx != NULL );
        CV_Assert( val != NULL );
    
        idxtype = CV_MAT_TYPE( idx->type );
        CV_Assert( idxtype == CV_16SC1 || idxtype == CV_32SC1 || idxtype == CV_32FC1 );
        CV_Assert( CV_MAT_TYPE( val->type ) == CV_32FC1 );
        if( sortcols )
        {
            CV_Assert( idx->rows == val->cols );
            CV_Assert( idx->cols == val->rows );
            istep = CV_ELEM_SIZE( val->type );
            jstep = val->step;
        }
        else
        {
            CV_Assert( idx->rows == val->rows );
            CV_Assert( idx->cols == val->cols );
            istep = val->step;
            jstep = CV_ELEM_SIZE( val->type );
        }
    
        va.data = val->data.ptr;
        va.step = jstep;
        switch( idxtype )
        {
            case CV_16SC1:
                for( i = 0; i < idx->rows; i++ )
                {
                    for( j = 0; j < idx->cols; j++ )
                    {
                        CV_MAT_ELEM( *idx, short, i, j ) = (short) j;
                    }
                    icvSortIndexedValArray_16s( (short*) (idx->data.ptr + (size_t)i * idx->step),
                                                idx->cols, &va );
                    va.data += istep;
                }
                break;
    
            case CV_32SC1:
                for( i = 0; i < idx->rows; i++ )
                {
                    for( j = 0; j < idx->cols; j++ )
                    {
                        CV_MAT_ELEM( *idx, int, i, j ) = j;
                    }
                    icvSortIndexedValArray_32s( (int*) (idx->data.ptr + (size_t)i * idx->step),
                                                idx->cols, &va );
                    va.data += istep;
                }
                break;
    
            case CV_32FC1:
                for( i = 0; i < idx->rows; i++ )
                {
                    for( j = 0; j < idx->cols; j++ )
                    {
                        CV_MAT_ELEM( *idx, float, i, j ) = (float) j;
                    }
                    icvSortIndexedValArray_32f( (float*) (idx->data.ptr + (size_t)i * idx->step),
                                                idx->cols, &va );
                    va.data += istep;
                }
                break;
    
            default:
                assert( 0 );
                break;
        }
    }
    
    CV_BOOST_IMPL
    void cvReleaseStumpClassifier( CvClassifier** classifier )
    {
        cvFree( classifier );
        *classifier = 0;
    }
    
    CV_BOOST_IMPL
    float cvEvalStumpClassifier( CvClassifier* classifier, CvMat* sample )
    {
        assert( classifier != NULL );
        assert( sample != NULL );
        assert( CV_MAT_TYPE( sample->type ) == CV_32FC1 );
    
        if( (CV_MAT_ELEM( (*sample), float, 0,
                ((CvStumpClassifier*) classifier)->compidx )) <
            ((CvStumpClassifier*) classifier)->threshold )
            return ((CvStumpClassifier*) classifier)->left;
        return ((CvStumpClassifier*) classifier)->right;
    }
    
    #define ICV_DEF_FIND_STUMP_THRESHOLD( suffix, type, error )                              
    static int icvFindStumpThreshold_##suffix(                                               
            uchar* data, size_t datastep,                                                    
            uchar* wdata, size_t wstep,                                                      
            uchar* ydata, size_t ystep,                                                      
            uchar* idxdata, size_t idxstep, int num,                                         
            float* lerror,                                                                   
            float* rerror,                                                                   
            float* threshold, float* left, float* right,                                     
            float* sumw, float* sumwy, float* sumwyy )                                       
    {                                                                                        
        int found = 0;                                                                       
        float wyl  = 0.0F;                                                                   
        float wl   = 0.0F;                                                                   
        float wyyl = 0.0F;                                                                   
        float wyr  = 0.0F;                                                                   
        float wr   = 0.0F;                                                                   
                                                                                             
        float curleft  = 0.0F;                                                               
        float curright = 0.0F;                                                               
        float* prevval = NULL;                                                               
        float* curval  = NULL;                                                               
        float curlerror = 0.0F;                                                              
        float currerror = 0.0F;                                                              
                                                                                             
        int i = 0;                                                                           
        int idx = 0;                                                                         
                                                                                             
        if( *sumw == FLT_MAX )                                                               
        {                                                                                    
            /* calculate sums */                                                             
            float *y = NULL;                                                                 
            float *w = NULL;                                                                 
            float wy = 0.0F;                                                                 
                                                                                             
            *sumw   = 0.0F;                                                                  
            *sumwy  = 0.0F;                                                                  
            *sumwyy = 0.0F;                                                                  
            for( i = 0; i < num; i++ )                                                       
            {                                                                                
                idx = (int) ( *((type*) (idxdata + i*idxstep)) );                            
                w = (float*) (wdata + idx * wstep);                                          
                *sumw += *w;                                                                 
                y = (float*) (ydata + idx * ystep);                                          
                wy = (*w) * (*y);                                                            
                *sumwy += wy;                                                                
                *sumwyy += wy * (*y);                                                        
            }                                                                                
        }                                                                                    
                                                                                             
        for( i = 0; i < num; i++ )                                                           
        {                                                                                    
            idx = (int) ( *((type*) (idxdata + i*idxstep)) );                                
            curval = (float*) (data + idx * datastep);                                       
             /* for debug purpose */                                                         
            if( i > 0 ) assert( (*prevval) <= (*curval) );                                   
                                                                                             
            wyr  = *sumwy - wyl;                                                             
            wr   = *sumw  - wl;                                                              
                                                                                             
            if( wl > 0.0 ) curleft = wyl / wl;                                               
            else curleft = 0.0F;                                                             
                                                                                             
            if( wr > 0.0 ) curright = wyr / wr;                                              
            else curright = 0.0F;                                                            
                                                                                             
            error                                                                            
                                                                                             
            if( curlerror + currerror < (*lerror) + (*rerror) )                              
            {                                                                                
                (*lerror) = curlerror;                                                       
                (*rerror) = currerror;                                                       
                *threshold = *curval;                                                        
                if( i > 0 ) {                                                                
                    *threshold = 0.5F * (*threshold + *prevval);                             
                }                                                                            
                *left  = curleft;                                                            
                *right = curright;                                                           
                found = 1;                                                                   
            }                                                                                
                                                                                             
            do                                                                               
            {                                                                                
                wl  += *((float*) (wdata + idx * wstep));                                    
                wyl += (*((float*) (wdata + idx * wstep)))                                   
                    * (*((float*) (ydata + idx * ystep)));                                   
                wyyl += *((float*) (wdata + idx * wstep))                                    
                    * (*((float*) (ydata + idx * ystep)))                                    
                    * (*((float*) (ydata + idx * ystep)));                                   
            }                                                                                
            while( (++i) < num &&                                                            
                ( *((float*) (data + (idx =                                                  
                    (int) ( *((type*) (idxdata + i*idxstep))) ) * datastep))                 
                    == *curval ) );                                                          
            --i;                                                                             
            prevval = curval;                                                                
        } /* for each value */                                                               
                                                                                             
        return found;                                                                        
    }
    
    /* misclassification error
     * err = MIN( wpos, wneg );
     */
    #define ICV_DEF_FIND_STUMP_THRESHOLD_MISC( suffix, type )                                
        ICV_DEF_FIND_STUMP_THRESHOLD( misc_##suffix, type,                                   
            float wposl = 0.5F * ( wl + wyl );                                               
            float wposr = 0.5F * ( wr + wyr );                                               
            curleft = 0.5F * ( 1.0F + curleft );                                             
            curright = 0.5F * ( 1.0F + curright );                                           
            curlerror = MIN( wposl, wl - wposl );                                            
            currerror = MIN( wposr, wr - wposr );                                            
        )
    
    /* gini error
     * err = 2 * wpos * wneg /(wpos + wneg)
     */
    #define ICV_DEF_FIND_STUMP_THRESHOLD_GINI( suffix, type )                                
        ICV_DEF_FIND_STUMP_THRESHOLD( gini_##suffix, type,                                   
            float wposl = 0.5F * ( wl + wyl );                                               
            float wposr = 0.5F * ( wr + wyr );                                               
            curleft = 0.5F * ( 1.0F + curleft );                                             
            curright = 0.5F * ( 1.0F + curright );                                           
            curlerror = 2.0F * wposl * ( 1.0F - curleft );                                   
            currerror = 2.0F * wposr * ( 1.0F - curright );                                  
        )
    
    #define CV_ENTROPY_THRESHOLD FLT_MIN
    
    /* entropy error
     * err = - wpos * log(wpos / (wpos + wneg)) - wneg * log(wneg / (wpos + wneg))
     */
    #define ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( suffix, type )                             
        ICV_DEF_FIND_STUMP_THRESHOLD( entropy_##suffix, type,                                
            float wposl = 0.5F * ( wl + wyl );                                               
            float wposr = 0.5F * ( wr + wyr );                                               
            curleft = 0.5F * ( 1.0F + curleft );                                             
            curright = 0.5F * ( 1.0F + curright );                                           
            curlerror = currerror = 0.0F;                                                    
            if( curleft > CV_ENTROPY_THRESHOLD )                                             
                curlerror -= wposl * logf( curleft );                                        
            if( curleft < 1.0F - CV_ENTROPY_THRESHOLD )                                      
                curlerror -= (wl - wposl) * logf( 1.0F - curleft );                          
                                                                                             
            if( curright > CV_ENTROPY_THRESHOLD )                                            
                currerror -= wposr * logf( curright );                                       
            if( curright < 1.0F - CV_ENTROPY_THRESHOLD )                                     
                currerror -= (wr - wposr) * logf( 1.0F - curright );                         
        )
    
    /* least sum of squares error */
    #define ICV_DEF_FIND_STUMP_THRESHOLD_SQ( suffix, type )                                  
        ICV_DEF_FIND_STUMP_THRESHOLD( sq_##suffix, type,                                     
            /* calculate error (sum of squares)          */                                  
            /* err = sum( w * (y - left(rigt)Val)^2 )    */                                  
            curlerror = wyyl + curleft * curleft * wl - 2.0F * curleft * wyl;                
            currerror = (*sumwyy) - wyyl + curright * curright * wr - 2.0F * curright * wyr; 
        )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 16s, short )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 32s, int )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 32f, float )
    
    
    ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 16s, short )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 32s, int )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 32f, float )
    
    
    ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 16s, short )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 32s, int )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 32f, float )
    
    
    ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 16s, short )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 32s, int )
    
    ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 32f, float )
    
    typedef int (*CvFindThresholdFunc)( uchar* data, size_t datastep,
                                        uchar* wdata, size_t wstep,
                                        uchar* ydata, size_t ystep,
                                        uchar* idxdata, size_t idxstep, int num,
                                        float* lerror,
                                        float* rerror,
                                        float* threshold, float* left, float* right,
                                        float* sumw, float* sumwy, float* sumwyy );
    
    CvFindThresholdFunc findStumpThreshold_16s[4] = {
            icvFindStumpThreshold_misc_16s,
            icvFindStumpThreshold_gini_16s,
            icvFindStumpThreshold_entropy_16s,
            icvFindStumpThreshold_sq_16s
        };
    
    CvFindThresholdFunc findStumpThreshold_32s[4] = {
            icvFindStumpThreshold_misc_32s,
            icvFindStumpThreshold_gini_32s,
            icvFindStumpThreshold_entropy_32s,
            icvFindStumpThreshold_sq_32s
        };
    
    CvFindThresholdFunc findStumpThreshold_32f[4] = {
            icvFindStumpThreshold_misc_32f,
            icvFindStumpThreshold_gini_32f,
            icvFindStumpThreshold_entropy_32f,
            icvFindStumpThreshold_sq_32f
        };
    
    CV_BOOST_IMPL
    CvClassifier* cvCreateStumpClassifier( CvMat* trainData,
                          int flags,
                          CvMat* trainClasses,
                          CvMat* /*typeMask*/,
                          CvMat* missedMeasurementsMask,
                          CvMat* compIdx,
                          CvMat* sampleIdx,
                          CvMat* weights,
                          CvClassifierTrainParams* trainParams
                        )
    {
        CvStumpClassifier* stump = NULL;
        int m = 0; /* number of samples */
        int n = 0; /* number of components */
        uchar* data = NULL;
        int cstep   = 0;
        int sstep   = 0;
        uchar* ydata = NULL;
        int ystep    = 0;
        uchar* idxdata = NULL;
        int idxstep    = 0;
        int l = 0; /* number of indices */
        uchar* wdata = NULL;
        int wstep    = 0;
    
        int* idx = NULL;
        int i = 0;
    
        float sumw   = FLT_MAX;
        float sumwy  = FLT_MAX;
        float sumwyy = FLT_MAX;
    
        CV_Assert( trainData != NULL );
        CV_Assert( CV_MAT_TYPE( trainData->type ) == CV_32FC1 );
        CV_Assert( trainClasses != NULL );
        CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 );
        CV_Assert( missedMeasurementsMask == NULL );
        CV_Assert( compIdx == NULL );
        CV_Assert( weights != NULL );
        CV_Assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 );
        CV_Assert( trainParams != NULL );
    
        data = trainData->data.ptr;
        if( CV_IS_ROW_SAMPLE( flags ) )
        {
            cstep = CV_ELEM_SIZE( trainData->type );
            sstep = trainData->step;
            m = trainData->rows;
            n = trainData->cols;
        }
        else
        {
            sstep = CV_ELEM_SIZE( trainData->type );
            cstep = trainData->step;
            m = trainData->cols;
            n = trainData->rows;
        }
    
        ydata = trainClasses->data.ptr;
        if( trainClasses->rows == 1 )
        {
            assert( trainClasses->cols == m );
            ystep = CV_ELEM_SIZE( trainClasses->type );
        }
        else
        {
            assert( trainClasses->rows == m );
            ystep = trainClasses->step;
        }
    
        wdata = weights->data.ptr;
        if( weights->rows == 1 )
        {
            assert( weights->cols == m );
            wstep = CV_ELEM_SIZE( weights->type );
        }
        else
        {
            assert( weights->rows == m );
            wstep = weights->step;
        }
    
        l = m;
        if( sampleIdx != NULL )
        {
            assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 );
    
            idxdata = sampleIdx->data.ptr;
            if( sampleIdx->rows == 1 )
            {
                l = sampleIdx->cols;
                idxstep = CV_ELEM_SIZE( sampleIdx->type );
            }
            else
            {
                l = sampleIdx->rows;
                idxstep = sampleIdx->step;
            }
            assert( l <= m );
        }
    
        idx = (int*) cvAlloc( l * sizeof( int ) );
        stump = (CvStumpClassifier*) cvAlloc( sizeof( CvStumpClassifier) );
    
        /* START */
        memset( (void*) stump, 0, sizeof( CvStumpClassifier ) );
    
        stump->eval = cvEvalStumpClassifier;
        stump->tune = NULL;
        stump->save = NULL;
        stump->release = cvReleaseStumpClassifier;
    
        stump->lerror = FLT_MAX;
        stump->rerror = FLT_MAX;
        stump->left  = 0.0F;
        stump->right = 0.0F;
    
        /* copy indices */
        if( sampleIdx != NULL )
        {
            for( i = 0; i < l; i++ )
            {
                idx[i] = (int) *((float*) (idxdata + i*idxstep));
            }
        }
        else
        {
            for( i = 0; i < l; i++ )
            {
                idx[i] = i;
            }
        }
    
        for( i = 0; i < n; i++ )
        {
            CvValArray va;
    
            va.data = data + i * ((size_t) cstep);
            va.step = sstep;
            icvSortIndexedValArray_32s( idx, l, &va );
            if( findStumpThreshold_32s[(int) ((CvStumpTrainParams*) trainParams)->error]
                  ( data + i * ((size_t) cstep), sstep,
                    wdata, wstep, ydata, ystep, (uchar*) idx, sizeof( int ), l,
                    &(stump->lerror), &(stump->rerror),
                    &(stump->threshold), &(stump->left), &(stump->right),
                    &sumw, &sumwy, &sumwyy ) )
            {
                stump->compidx = i;
            }
        } /* for each component */
    
        /* END */
    
        cvFree( &idx );
    
        if( ((CvStumpTrainParams*) trainParams)->type == CV_CLASSIFICATION_CLASS )
        {
            stump->left = 2.0F * (stump->left >= 0.5F) - 1.0F;
            stump->right = 2.0F * (stump->right >= 0.5F) - 1.0F;
        }
    
        return (CvClassifier*) stump;
    }
    
    /*
     * cvCreateMTStumpClassifier
     *
     * Multithreaded stump classifier constructor
     * Includes huge train data support through callback function
     */
    CV_BOOST_IMPL
    CvClassifier* cvCreateMTStumpClassifier( CvMat* trainData,
                          int flags,
                          CvMat* trainClasses,
                          CvMat* /*typeMask*/,
                          CvMat* missedMeasurementsMask,
                          CvMat* compIdx,
                          CvMat* sampleIdx,
                          CvMat* weights,
                          CvClassifierTrainParams* trainParams )
    {
        CvStumpClassifier* stump = NULL;
        int m = 0; /* number of samples */
        int n = 0; /* number of components */
        uchar* data = NULL;
        size_t cstep   = 0;
        size_t sstep   = 0;
        int    datan   = 0; /* num components */
        uchar* ydata = NULL;
        size_t ystep = 0;
        uchar* idxdata = NULL;
        size_t idxstep = 0;
        int    l = 0; /* number of indices */
        uchar* wdata = NULL;
        size_t wstep = 0;
    
        uchar* sorteddata = NULL;
        int    sortedtype    = 0;
        size_t sortedcstep   = 0; /* component step */
        size_t sortedsstep   = 0; /* sample step */
        int    sortedn       = 0; /* num components */
        int    sortedm       = 0; /* num samples */
    
        char* filter = NULL;
        int i = 0;
    
        int compidx = 0;
        int stumperror;
        int portion;
    
        /* private variables */
        CvMat mat;
        CvValArray va;
        float lerror;
        float rerror;
        float left;
        float right;
        float threshold;
        int optcompidx;
    
        float sumw;
        float sumwy;
        float sumwyy;
    
        int t_compidx;
        int t_n;
    
        int ti;
        int tj;
        int tk;
    
        uchar* t_data;
        size_t t_cstep;
        size_t t_sstep;
    
        size_t matcstep;
        size_t matsstep;
    
        int* t_idx;
        /* end private variables */
    
        CV_Assert( trainParams != NULL );
        CV_Assert( trainClasses != NULL );
        CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 );
        CV_Assert( missedMeasurementsMask == NULL );
        CV_Assert( compIdx == NULL );
    
        stumperror = (int) ((CvMTStumpTrainParams*) trainParams)->error;
    
        ydata = trainClasses->data.ptr;
        if( trainClasses->rows == 1 )
        {
            m = trainClasses->cols;
            ystep = CV_ELEM_SIZE( trainClasses->type );
        }
        else
        {
            m = trainClasses->rows;
            ystep = trainClasses->step;
        }
    
        wdata = weights->data.ptr;
        if( weights->rows == 1 )
        {
            CV_Assert( weights->cols == m );
            wstep = CV_ELEM_SIZE( weights->type );
        }
        else
        {
            CV_Assert( weights->rows == m );
            wstep = weights->step;
        }
    
        if( ((CvMTStumpTrainParams*) trainParams)->sortedIdx != NULL )
        {
            sortedtype =
                CV_MAT_TYPE( ((CvMTStumpTrainParams*) trainParams)->sortedIdx->type );
            assert( sortedtype == CV_16SC1 || sortedtype == CV_32SC1
                    || sortedtype == CV_32FC1 );
            sorteddata = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->data.ptr;
            sortedsstep = CV_ELEM_SIZE( sortedtype );
            sortedcstep = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->step;
            sortedn = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->rows;
            sortedm = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->cols;
        }
    
        if( trainData == NULL )
        {
            assert( ((CvMTStumpTrainParams*) trainParams)->getTrainData != NULL );
            n = ((CvMTStumpTrainParams*) trainParams)->numcomp;
            assert( n > 0 );
        }
        else
        {
            assert( CV_MAT_TYPE( trainData->type ) == CV_32FC1 );
            data = trainData->data.ptr;
            if( CV_IS_ROW_SAMPLE( flags ) )
            {
                cstep = CV_ELEM_SIZE( trainData->type );
                sstep = trainData->step;
                assert( m == trainData->rows );
                datan = n = trainData->cols;
            }
            else
            {
                sstep = CV_ELEM_SIZE( trainData->type );
                cstep = trainData->step;
                assert( m == trainData->cols );
                datan = n = trainData->rows;
            }
            if( ((CvMTStumpTrainParams*) trainParams)->getTrainData != NULL )
            {
                n = ((CvMTStumpTrainParams*) trainParams)->numcomp;
            }
        }
        assert( datan <= n );
    
        if( sampleIdx != NULL )
        {
            assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 );
            idxdata = sampleIdx->data.ptr;
            idxstep = ( sampleIdx->rows == 1 )
                ? CV_ELEM_SIZE( sampleIdx->type ) : sampleIdx->step;
            l = ( sampleIdx->rows == 1 ) ?

    sampleIdx->cols : sampleIdx->rows; if( sorteddata != NULL ) { filter = (char*) cvAlloc( sizeof( char ) * m ); memset( (void*) filter, 0, sizeof( char ) * m ); for( i = 0; i < l; i++ ) { filter[(int) *((float*) (idxdata + i * idxstep))] = (char) 1; } } } else { l = m; } stump = (CvStumpClassifier*) cvAlloc( sizeof( CvStumpClassifier) ); /* START */ memset( (void*) stump, 0, sizeof( CvStumpClassifier ) ); portion = ((CvMTStumpTrainParams*)trainParams)->portion; if( portion < 1 ) { /* auto portion */ portion = n; #ifdef _OPENMP portion /= omp_get_max_threads(); #endif /* _OPENMP */ } stump->eval = cvEvalStumpClassifier; stump->tune = NULL; stump->save = NULL; stump->release = cvReleaseStumpClassifier; stump->lerror = FLT_MAX; stump->rerror = FLT_MAX; stump->left = 0.0F; stump->right = 0.0F; compidx = 0; #ifdef _OPENMP #pragma omp parallel private(mat, va, lerror, rerror, left, right, threshold, optcompidx, sumw, sumwy, sumwyy, t_compidx, t_n, ti, tj, tk, t_data, t_cstep, t_sstep, matcstep, matsstep, t_idx) #endif /* _OPENMP */ { lerror = FLT_MAX; rerror = FLT_MAX; left = 0.0F; right = 0.0F; threshold = 0.0F; optcompidx = 0; sumw = FLT_MAX; sumwy = FLT_MAX; sumwyy = FLT_MAX; t_compidx = 0; t_n = 0; ti = 0; tj = 0; tk = 0; t_data = NULL; t_cstep = 0; t_sstep = 0; matcstep = 0; matsstep = 0; t_idx = NULL; mat.data.ptr = NULL; if( datan < n ) { /* prepare matrix for callback */ if( CV_IS_ROW_SAMPLE( flags ) ) { mat = cvMat( m, portion, CV_32FC1, 0 ); matcstep = CV_ELEM_SIZE( mat.type ); matsstep = mat.step; } else { mat = cvMat( portion, m, CV_32FC1, 0 ); matcstep = mat.step; matsstep = CV_ELEM_SIZE( mat.type ); } mat.data.ptr = (uchar*) cvAlloc( sizeof( float ) * mat.rows * mat.cols ); } if( filter != NULL || sortedn < n ) { t_idx = (int*) cvAlloc( sizeof( int ) * m ); if( sortedn == 0 || filter == NULL ) { if( idxdata != NULL ) { for( ti = 0; ti < l; ti++ ) { t_idx[ti] = (int) *((float*) (idxdata + ti * idxstep)); } } else { for( ti = 0; ti < l; ti++ ) { t_idx[ti] = ti; } } } } #ifdef _OPENMP #pragma omp critical(c_compidx) #endif /* _OPENMP */ { t_compidx = compidx; compidx += portion; } while( t_compidx < n ) { t_n = portion; if( t_compidx < datan ) { t_n = ( t_n < (datan - t_compidx) ) ?

    t_n : (datan - t_compidx); t_data = data; t_cstep = cstep; t_sstep = sstep; } else { t_n = ( t_n < (n - t_compidx) ) ?

    t_n : (n - t_compidx); t_cstep = matcstep; t_sstep = matsstep; t_data = mat.data.ptr - t_compidx * ((size_t) t_cstep ); /* calculate components */ ((CvMTStumpTrainParams*)trainParams)->getTrainData( &mat, sampleIdx, compIdx, t_compidx, t_n, ((CvMTStumpTrainParams*)trainParams)->userdata ); } if( sorteddata != NULL ) { if( filter != NULL ) { /* have sorted indices and filter */ switch( sortedtype ) { case CV_16SC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { tk = 0; for( tj = 0; tj < sortedm; tj++ ) { int curidx = (int) ( *((short*) (sorteddata + ti * sortedcstep + tj * sortedsstep)) ); if( filter[curidx] != 0 ) { t_idx[tk++] = curidx; } } if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, (uchar*) t_idx, sizeof( int ), tk, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; case CV_32SC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { tk = 0; for( tj = 0; tj < sortedm; tj++ ) { int curidx = (int) ( *((int*) (sorteddata + ti * sortedcstep + tj * sortedsstep)) ); if( filter[curidx] != 0 ) { t_idx[tk++] = curidx; } } if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, (uchar*) t_idx, sizeof( int ), tk, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; case CV_32FC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { tk = 0; for( tj = 0; tj < sortedm; tj++ ) { int curidx = (int) ( *((float*) (sorteddata + ti * sortedcstep + tj * sortedsstep)) ); if( filter[curidx] != 0 ) { t_idx[tk++] = curidx; } } if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, (uchar*) t_idx, sizeof( int ), tk, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; default: assert( 0 ); break; } } else { /* have sorted indices */ switch( sortedtype ) { case CV_16SC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { if( findStumpThreshold_16s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, sorteddata + ti * sortedcstep, sortedsstep, sortedm, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; case CV_32SC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, sorteddata + ti * sortedcstep, sortedsstep, sortedm, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; case CV_32FC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { if( findStumpThreshold_32f[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, sorteddata + ti * sortedcstep, sortedsstep, sortedm, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; default: assert( 0 ); break; } } } ti = MAX( t_compidx, MIN( sortedn, t_compidx + t_n ) ); for( ; ti < t_compidx + t_n; ti++ ) { va.data = t_data + ti * t_cstep; va.step = t_sstep; icvSortIndexedValArray_32s( t_idx, l, &va ); if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, (uchar*)t_idx, sizeof( int ), l, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } #ifdef _OPENMP #pragma omp critical(c_compidx) #endif /* _OPENMP */ { t_compidx = compidx; compidx += portion; } } /* while have training data */ /* get the best classifier */ #ifdef _OPENMP #pragma omp critical(c_beststump) #endif /* _OPENMP */ { if( lerror + rerror < stump->lerror + stump->rerror ) { stump->lerror = lerror; stump->rerror = rerror; stump->compidx = optcompidx; stump->threshold = threshold; stump->left = left; stump->right = right; } } /* free allocated memory */ if( mat.data.ptr != NULL ) { cvFree( &(mat.data.ptr) ); } if( t_idx != NULL ) { cvFree( &t_idx ); } } /* end of parallel region */ /* END */ /* free allocated memory */ if( filter != NULL ) { cvFree( &filter ); } if( ((CvMTStumpTrainParams*) trainParams)->type == CV_CLASSIFICATION_CLASS ) { stump->left = 2.0F * (stump->left >= 0.5F) - 1.0F; stump->right = 2.0F * (stump->right >= 0.5F) - 1.0F; } return (CvClassifier*) stump; } CV_BOOST_IMPL float cvEvalCARTClassifier( CvClassifier* classifier, CvMat* sample ) { CV_FUNCNAME( "cvEvalCARTClassifier" ); int idx = 0; __BEGIN__; CV_ASSERT( classifier != NULL ); CV_ASSERT( sample != NULL ); CV_ASSERT( CV_MAT_TYPE( sample->type ) == CV_32FC1 ); CV_ASSERT( sample->rows == 1 || sample->cols == 1 ); if( sample->rows == 1 ) { do { if( (CV_MAT_ELEM( (*sample), float, 0, ((CvCARTClassifier*) classifier)->compidx[idx] )) < ((CvCARTClassifier*) classifier)->threshold[idx] ) { idx = ((CvCARTClassifier*) classifier)->left[idx]; } else { idx = ((CvCARTClassifier*) classifier)->right[idx]; } } while( idx > 0 ); } else { do { if( (CV_MAT_ELEM( (*sample), float, ((CvCARTClassifier*) classifier)->compidx[idx], 0 )) < ((CvCARTClassifier*) classifier)->threshold[idx] ) { idx = ((CvCARTClassifier*) classifier)->left[idx]; } else { idx = ((CvCARTClassifier*) classifier)->right[idx]; } } while( idx > 0 ); } __END__; return ((CvCARTClassifier*) classifier)->val[-idx]; } static float cvEvalCARTClassifierIdx( CvClassifier* classifier, CvMat* sample ) { CV_FUNCNAME( "cvEvalCARTClassifierIdx" ); int idx = 0; __BEGIN__; CV_ASSERT( classifier != NULL ); CV_ASSERT( sample != NULL ); CV_ASSERT( CV_MAT_TYPE( sample->type ) == CV_32FC1 ); CV_ASSERT( sample->rows == 1 || sample->cols == 1 ); if( sample->rows == 1 ) { do { if( (CV_MAT_ELEM( (*sample), float, 0, ((CvCARTClassifier*) classifier)->compidx[idx] )) < ((CvCARTClassifier*) classifier)->threshold[idx] ) { idx = ((CvCARTClassifier*) classifier)->left[idx]; } else { idx = ((CvCARTClassifier*) classifier)->right[idx]; } } while( idx > 0 ); } else { do { if( (CV_MAT_ELEM( (*sample), float, ((CvCARTClassifier*) classifier)->compidx[idx], 0 )) < ((CvCARTClassifier*) classifier)->threshold[idx] ) { idx = ((CvCARTClassifier*) classifier)->left[idx]; } else { idx = ((CvCARTClassifier*) classifier)->right[idx]; } } while( idx > 0 ); } __END__; return (float) (-idx); } CV_BOOST_IMPL void cvReleaseCARTClassifier( CvClassifier** classifier ) { cvFree( classifier ); *classifier = NULL; } static void CV_CDECL icvDefaultSplitIdx_R( int compidx, float threshold, CvMat* idx, CvMat** left, CvMat** right, void* userdata ) { CvMat* trainData = (CvMat*) userdata; int i = 0; *left = cvCreateMat( 1, trainData->rows, CV_32FC1 ); *right = cvCreateMat( 1, trainData->rows, CV_32FC1 ); (*left)->cols = (*right)->cols = 0; if( idx == NULL ) { for( i = 0; i < trainData->rows; i++ ) { if( CV_MAT_ELEM( *trainData, float, i, compidx ) < threshold ) { (*left)->data.fl[(*left)->cols++] = (float) i; } else { (*right)->data.fl[(*right)->cols++] = (float) i; } } } else { uchar* idxdata; int idxnum; int idxstep; int index; idxdata = idx->data.ptr; idxnum = (idx->rows == 1) ?

    idx->cols : idx->rows; idxstep = (idx->rows == 1) ?

    CV_ELEM_SIZE( idx->type ) : idx->step; for( i = 0; i < idxnum; i++ ) { index = (int) *((float*) (idxdata + i * idxstep)); if( CV_MAT_ELEM( *trainData, float, index, compidx ) < threshold ) { (*left)->data.fl[(*left)->cols++] = (float) index; } else { (*right)->data.fl[(*right)->cols++] = (float) index; } } } } static void CV_CDECL icvDefaultSplitIdx_C( int compidx, float threshold, CvMat* idx, CvMat** left, CvMat** right, void* userdata ) { CvMat* trainData = (CvMat*) userdata; int i = 0; *left = cvCreateMat( 1, trainData->cols, CV_32FC1 ); *right = cvCreateMat( 1, trainData->cols, CV_32FC1 ); (*left)->cols = (*right)->cols = 0; if( idx == NULL ) { for( i = 0; i < trainData->cols; i++ ) { if( CV_MAT_ELEM( *trainData, float, compidx, i ) < threshold ) { (*left)->data.fl[(*left)->cols++] = (float) i; } else { (*right)->data.fl[(*right)->cols++] = (float) i; } } } else { uchar* idxdata; int idxnum; int idxstep; int index; idxdata = idx->data.ptr; idxnum = (idx->rows == 1) ? idx->cols : idx->rows; idxstep = (idx->rows == 1) ? CV_ELEM_SIZE( idx->type ) : idx->step; for( i = 0; i < idxnum; i++ ) { index = (int) *((float*) (idxdata + i * idxstep)); if( CV_MAT_ELEM( *trainData, float, compidx, index ) < threshold ) { (*left)->data.fl[(*left)->cols++] = (float) index; } else { (*right)->data.fl[(*right)->cols++] = (float) index; } } } } /* internal structure used in CART creation */ typedef struct CvCARTNode { CvMat* sampleIdx; CvStumpClassifier* stump; int parent; int leftflag; float errdrop; } CvCARTNode; CV_BOOST_IMPL CvClassifier* cvCreateCARTClassifier( CvMat* trainData, int flags, CvMat* trainClasses, CvMat* typeMask, CvMat* missedMeasurementsMask, CvMat* compIdx, CvMat* sampleIdx, CvMat* weights, CvClassifierTrainParams* trainParams ) { CvCARTClassifier* cart = NULL; size_t datasize = 0; int count = 0; int i = 0; int j = 0; CvCARTNode* intnode = NULL; CvCARTNode* list = NULL; int listcount = 0; CvMat* lidx = NULL; CvMat* ridx = NULL; float maxerrdrop = 0.0F; int idx = 0; void (*splitIdxCallback)( int compidx, float threshold, CvMat* idx, CvMat** left, CvMat** right, void* userdata ); void* userdata; count = ((CvCARTTrainParams*) trainParams)->count; assert( count > 0 ); datasize = sizeof( *cart ) + (sizeof( float ) + 3 * sizeof( int )) * count + sizeof( float ) * (count + 1); cart = (CvCARTClassifier*) cvAlloc( datasize ); memset( cart, 0, datasize ); cart->count = count; cart->eval = cvEvalCARTClassifier; cart->save = NULL; cart->release = cvReleaseCARTClassifier; cart->compidx = (int*) (cart + 1); cart->threshold = (float*) (cart->compidx + count); cart->left = (int*) (cart->threshold + count); cart->right = (int*) (cart->left + count); cart->val = (float*) (cart->right + count); datasize = sizeof( CvCARTNode ) * (count + count); intnode = (CvCARTNode*) cvAlloc( datasize ); memset( intnode, 0, datasize ); list = (CvCARTNode*) (intnode + count); splitIdxCallback = ((CvCARTTrainParams*) trainParams)->splitIdx; userdata = ((CvCARTTrainParams*) trainParams)->userdata; if( splitIdxCallback == NULL ) { splitIdxCallback = ( CV_IS_ROW_SAMPLE( flags ) ) ? icvDefaultSplitIdx_R : icvDefaultSplitIdx_C; userdata = trainData; } /* create root of the tree */ intnode[0].sampleIdx = sampleIdx; intnode[0].stump = (CvStumpClassifier*) ((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, trainClasses, typeMask, missedMeasurementsMask, compIdx, sampleIdx, weights, ((CvCARTTrainParams*) trainParams)->stumpTrainParams ); cart->left[0] = cart->right[0] = 0; /* build tree */ listcount = 0; for( i = 1; i < count; i++ ) { /* split last added node */ splitIdxCallback( intnode[i-1].stump->compidx, intnode[i-1].stump->threshold, intnode[i-1].sampleIdx, &lidx, &ridx, userdata ); if( intnode[i-1].stump->lerror != 0.0F ) { list[listcount].sampleIdx = lidx; list[listcount].stump = (CvStumpClassifier*) ((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, trainClasses, typeMask, missedMeasurementsMask, compIdx, list[listcount].sampleIdx, weights, ((CvCARTTrainParams*) trainParams)->stumpTrainParams ); list[listcount].errdrop = intnode[i-1].stump->lerror - (list[listcount].stump->lerror + list[listcount].stump->rerror); list[listcount].leftflag = 1; list[listcount].parent = i-1; listcount++; } else { cvReleaseMat( &lidx ); } if( intnode[i-1].stump->rerror != 0.0F ) { list[listcount].sampleIdx = ridx; list[listcount].stump = (CvStumpClassifier*) ((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, trainClasses, typeMask, missedMeasurementsMask, compIdx, list[listcount].sampleIdx, weights, ((CvCARTTrainParams*) trainParams)->stumpTrainParams ); list[listcount].errdrop = intnode[i-1].stump->rerror - (list[listcount].stump->lerror + list[listcount].stump->rerror); list[listcount].leftflag = 0; list[listcount].parent = i-1; listcount++; } else { cvReleaseMat( &ridx ); } if( listcount == 0 ) break; /* find the best node to be added to the tree */ idx = 0; maxerrdrop = list[idx].errdrop; for( j = 1; j < listcount; j++ ) { if( list[j].errdrop > maxerrdrop ) { idx = j; maxerrdrop = list[j].errdrop; } } intnode[i] = list[idx]; if( list[idx].leftflag ) { cart->left[list[idx].parent] = i; } else { cart->right[list[idx].parent] = i; } if( idx != (listcount - 1) ) { list[idx] = list[listcount - 1]; } listcount--; } /* fill <cart> fields */ j = 0; cart->count = 0; for( i = 0; i < count && (intnode[i].stump != NULL); i++ ) { cart->count++; cart->compidx[i] = intnode[i].stump->compidx; cart->threshold[i] = intnode[i].stump->threshold; /* leaves */ if( cart->left[i] <= 0 ) { cart->left[i] = -j; cart->val[j] = intnode[i].stump->left; j++; } if( cart->right[i] <= 0 ) { cart->right[i] = -j; cart->val[j] = intnode[i].stump->right; j++; } } /* CLEAN UP */ for( i = 0; i < count && (intnode[i].stump != NULL); i++ ) { intnode[i].stump->release( (CvClassifier**) &(intnode[i].stump) ); if( i != 0 ) { cvReleaseMat( &(intnode[i].sampleIdx) ); } } for( i = 0; i < listcount; i++ ) { list[i].stump->release( (CvClassifier**) &(list[i].stump) ); cvReleaseMat( &(list[i].sampleIdx) ); } cvFree( &intnode ); return (CvClassifier*) cart; } /**************************************************************************************** * Boosting * ****************************************************************************************/ typedef struct CvBoostTrainer { CvBoostType type; int count; /* (idx) ? number_of_indices : number_of_samples */ int* idx; float* F; } CvBoostTrainer; /* * cvBoostStartTraining, cvBoostNextWeakClassifier, cvBoostEndTraining * * These functions perform training of 2-class boosting classifier * using ANY appropriate weak classifier */ static CvBoostTrainer* icvBoostStartTraining( CvMat* trainClasses, CvMat* weakTrainVals, CvMat* /*weights*/, CvMat* sampleIdx, CvBoostType type ) { uchar* ydata; int ystep; int m; uchar* traindata; int trainstep; int trainnum; int i; int idx; size_t datasize; CvBoostTrainer* ptr; int idxnum; int idxstep; uchar* idxdata; assert( trainClasses != NULL ); assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); assert( weakTrainVals != NULL ); assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); CV_MAT2VEC( *trainClasses, ydata, ystep, m ); CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); CV_Assert( m == trainnum ); idxnum = 0; idxstep = 0; idxdata = NULL; if( sampleIdx ) { CV_MAT2VEC( *sampleIdx, idxdata, idxstep, idxnum ); } datasize = sizeof( *ptr ) + sizeof( *ptr->idx ) * idxnum; ptr = (CvBoostTrainer*) cvAlloc( datasize ); memset( ptr, 0, datasize ); ptr->F = NULL; ptr->idx = NULL; ptr->count = m; ptr->type = type; if( idxnum > 0 ) { CvScalar s; ptr->idx = (int*) (ptr + 1); ptr->count = idxnum; for( i = 0; i < ptr->count; i++ ) { cvRawDataToScalar( idxdata + i*idxstep, CV_MAT_TYPE( sampleIdx->type ), &s ); ptr->idx[i] = (int) s.val[0]; } } for( i = 0; i < ptr->count; i++ ) { idx = (ptr->idx) ?

    ptr->idx[i] : i; *((float*) (traindata + idx * trainstep)) = 2.0F * (*((float*) (ydata + idx * ystep))) - 1.0F; } return ptr; } /* * * Discrete AdaBoost functions * */ static float icvBoostNextWeakClassifierDAB( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* /*weakTrainVals*/, CvMat* weights, CvBoostTrainer* trainer ) { uchar* evaldata; int evalstep; int m; uchar* ydata; int ystep; int ynum; uchar* wdata; int wstep; int wnum; float sumw; float err; int i; int idx; CV_Assert( weakEvalVals != NULL ); CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); CV_Assert( trainClasses != NULL ); CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); CV_Assert( weights != NULL ); CV_Assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum ); CV_Assert( m == wnum ); sumw = 0.0F; err = 0.0F; for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ?

    trainer->idx[i] : i; sumw += *((float*) (wdata + idx*wstep)); err += (*((float*) (wdata + idx*wstep))) * ( (*((float*) (evaldata + idx*evalstep))) != 2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F ); } err /= sumw; err = -cvLogRatio( err ); for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) *= expf( err * ((*((float*) (evaldata + idx*evalstep))) != 2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F) ); sumw += *((float*) (wdata + idx*wstep)); } for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ?

    trainer->idx[i] : i; *((float*) (wdata + idx * wstep)) /= sumw; } return err; } /* * * Real AdaBoost functions * */ static float icvBoostNextWeakClassifierRAB( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* /*weakTrainVals*/, CvMat* weights, CvBoostTrainer* trainer ) { uchar* evaldata; int evalstep; int m; uchar* ydata; int ystep; int ynum; uchar* wdata; int wstep; int wnum; float sumw; int i, idx; CV_Assert( weakEvalVals != NULL ); CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); CV_Assert( trainClasses != NULL ); CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); CV_Assert( weights != NULL ); CV_Assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum ); CV_Assert( m == wnum ); sumw = 0.0F; for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) *= expf( (-(*((float*) (ydata + idx*ystep))) + 0.5F) * cvLogRatio( *((float*) (evaldata + idx*evalstep)) ) ); sumw += *((float*) (wdata + idx*wstep)); } for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ?

    trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) /= sumw; } return 1.0F; } /* * * LogitBoost functions * */ #define CV_LB_PROB_THRESH 0.01F #define CV_LB_WEIGHT_THRESHOLD 0.0001F static void icvResponsesAndWeightsLB( int num, uchar* wdata, int wstep, uchar* ydata, int ystep, uchar* fdata, int fstep, uchar* traindata, int trainstep, int* indices ) { int i, idx; float p; for( i = 0; i < num; i++ ) { idx = (indices) ? indices[i] : i; p = 1.0F / (1.0F + expf( -(*((float*) (fdata + idx*fstep)))) ); *((float*) (wdata + idx*wstep)) = MAX( p * (1.0F - p), CV_LB_WEIGHT_THRESHOLD ); if( *((float*) (ydata + idx*ystep)) == 1.0F ) { *((float*) (traindata + idx*trainstep)) = 1.0F / (MAX( p, CV_LB_PROB_THRESH )); } else { *((float*) (traindata + idx*trainstep)) = -1.0F / (MAX( 1.0F - p, CV_LB_PROB_THRESH )); } } } static CvBoostTrainer* icvBoostStartTrainingLB( CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvMat* sampleIdx, CvBoostType type ) { size_t datasize; CvBoostTrainer* ptr; uchar* ydata; int ystep; int m; uchar* traindata; int trainstep; int trainnum; uchar* wdata; int wstep; int wnum; int i; int idxnum; int idxstep; uchar* idxdata; assert( trainClasses != NULL ); assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); assert( weakTrainVals != NULL ); assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); assert( weights != NULL ); assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); CV_MAT2VEC( *trainClasses, ydata, ystep, m ); CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == trainnum ); CV_Assert( m == wnum ); idxnum = 0; idxstep = 0; idxdata = NULL; if( sampleIdx ) { CV_MAT2VEC( *sampleIdx, idxdata, idxstep, idxnum ); } datasize = sizeof( *ptr ) + sizeof( *ptr->F ) * m + sizeof( *ptr->idx ) * idxnum; ptr = (CvBoostTrainer*) cvAlloc( datasize ); memset( ptr, 0, datasize ); ptr->F = (float*) (ptr + 1); ptr->idx = NULL; ptr->count = m; ptr->type = type; if( idxnum > 0 ) { CvScalar s; ptr->idx = (int*) (ptr->F + m); ptr->count = idxnum; for( i = 0; i < ptr->count; i++ ) { cvRawDataToScalar( idxdata + i*idxstep, CV_MAT_TYPE( sampleIdx->type ), &s ); ptr->idx[i] = (int) s.val[0]; } } for( i = 0; i < m; i++ ) { ptr->F[i] = 0.0F; } icvResponsesAndWeightsLB( ptr->count, wdata, wstep, ydata, ystep, (uchar*) ptr->F, sizeof( *ptr->F ), traindata, trainstep, ptr->idx ); return ptr; } static float icvBoostNextWeakClassifierLB( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvBoostTrainer* trainer ) { uchar* evaldata; int evalstep; int m; uchar* ydata; int ystep; int ynum; uchar* traindata; int trainstep; int trainnum; uchar* wdata; int wstep; int wnum; int i, idx; assert( weakEvalVals != NULL ); assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); assert( trainClasses != NULL ); assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); assert( weakTrainVals != NULL ); assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); assert( weights != NULL ); assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum ); CV_Assert( m == wnum ); CV_Assert( m == trainnum ); //assert( m == trainer->count ); for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ?

    trainer->idx[i] : i; trainer->F[idx] += *((float*) (evaldata + idx * evalstep)); } icvResponsesAndWeightsLB( trainer->count, wdata, wstep, ydata, ystep, (uchar*) trainer->F, sizeof( *trainer->F ), traindata, trainstep, trainer->idx ); return 1.0F; } /* * * Gentle AdaBoost * */ static float icvBoostNextWeakClassifierGAB( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* /*weakTrainVals*/, CvMat* weights, CvBoostTrainer* trainer ) { uchar* evaldata; int evalstep; int m; uchar* ydata; int ystep; int ynum; uchar* wdata; int wstep; int wnum; int i, idx; float sumw; CV_Assert( weakEvalVals != NULL ); CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); CV_Assert( trainClasses != NULL ); CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); CV_Assert( weights != NULL ); CV_Assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum ); CV_Assert( m == wnum ); sumw = 0.0F; for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) *= expf( -(*((float*) (evaldata + idx*evalstep))) * ( 2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F ) ); sumw += *((float*) (wdata + idx*wstep)); } for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) /= sumw; } return 1.0F; } typedef CvBoostTrainer* (*CvBoostStartTraining)( CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvMat* sampleIdx, CvBoostType type ); typedef float (*CvBoostNextWeakClassifier)( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvBoostTrainer* data ); CvBoostStartTraining startTraining[4] = { icvBoostStartTraining, icvBoostStartTraining, icvBoostStartTrainingLB, icvBoostStartTraining }; CvBoostNextWeakClassifier nextWeakClassifier[4] = { icvBoostNextWeakClassifierDAB, icvBoostNextWeakClassifierRAB, icvBoostNextWeakClassifierLB, icvBoostNextWeakClassifierGAB }; /* * * Dispatchers * */ CV_BOOST_IMPL CvBoostTrainer* cvBoostStartTraining( CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvMat* sampleIdx, CvBoostType type ) { return startTraining[type]( trainClasses, weakTrainVals, weights, sampleIdx, type ); } CV_BOOST_IMPL void cvBoostEndTraining( CvBoostTrainer** trainer ) { cvFree( trainer ); *trainer = NULL; } CV_BOOST_IMPL float cvBoostNextWeakClassifier( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvBoostTrainer* trainer ) { return nextWeakClassifier[trainer->type]( weakEvalVals, trainClasses, weakTrainVals, weights, trainer ); } /**************************************************************************************** * Boosted tree models * ****************************************************************************************/ typedef struct CvBtTrainer { /* {{ external */ CvMat* trainData; int flags; CvMat* trainClasses; int m; uchar* ydata; int ystep; CvMat* sampleIdx; int numsamples; float param[2]; CvBoostType type; int numclasses; /* }} external */ CvMTStumpTrainParams stumpParams; CvCARTTrainParams cartParams; float* f; /* F_(m-1) */ CvMat* y; /* yhat */ CvMat* weights; CvBoostTrainer* boosttrainer; } CvBtTrainer; /* * cvBtStart, cvBtNext, cvBtEnd * * These functions perform iterative training of * 2-class (CV_DABCLASS - CV_GABCLASS, CV_L2CLASS), K-class (CV_LKCLASS) classifier * or fit regression model (CV_LSREG, CV_LADREG, CV_MREG) * using decision tree as a weak classifier. */ typedef void (*CvZeroApproxFunc)( float* approx, CvBtTrainer* trainer ); /* Mean zero approximation */ static void icvZeroApproxMean( float* approx, CvBtTrainer* trainer ) { int i; int idx; approx[0] = 0.0F; for( i = 0; i < trainer->numsamples; i++ ) { idx = icvGetIdxAt( trainer->sampleIdx, i ); approx[0] += *((float*) (trainer->ydata + idx * trainer->ystep)); } approx[0] /= (float) trainer->numsamples; } /* * Median zero approximation */ static void icvZeroApproxMed( float* approx, CvBtTrainer* trainer ) { int i; int idx; for( i = 0; i < trainer->numsamples; i++ ) { idx = icvGetIdxAt( trainer->sampleIdx, i ); trainer->f[i] = *((float*) (trainer->ydata + idx * trainer->ystep)); } icvSort_32f( trainer->f, trainer->numsamples, 0 ); approx[0] = trainer->f[trainer->numsamples / 2]; } /* * 0.5 * log( mean(y) / (1 - mean(y)) ) where y in {0, 1} */ static void icvZeroApproxLog( float* approx, CvBtTrainer* trainer ) { float y_mean; icvZeroApproxMean( &y_mean, trainer ); approx[0] = 0.5F * cvLogRatio( y_mean ); } /* * 0 zero approximation */ static void icvZeroApprox0( float* approx, CvBtTrainer* trainer ) { int i; for( i = 0; i < trainer->numclasses; i++ ) { approx[i] = 0.0F; } } static CvZeroApproxFunc icvZeroApproxFunc[] = { icvZeroApprox0, /* CV_DABCLASS */ icvZeroApprox0, /* CV_RABCLASS */ icvZeroApprox0, /* CV_LBCLASS */ icvZeroApprox0, /* CV_GABCLASS */ icvZeroApproxLog, /* CV_L2CLASS */ icvZeroApprox0, /* CV_LKCLASS */ icvZeroApproxMean, /* CV_LSREG */ icvZeroApproxMed, /* CV_LADREG */ icvZeroApproxMed, /* CV_MREG */ }; CV_BOOST_IMPL void cvBtNext( CvCARTClassifier** trees, CvBtTrainer* trainer ); static CvBtTrainer* cvBtStart( CvCARTClassifier** trees, CvMat* trainData, int flags, CvMat* trainClasses, CvMat* sampleIdx, int numsplits, CvBoostType type, int numclasses, float* param ) { CvBtTrainer* ptr = 0; CV_FUNCNAME( "cvBtStart" ); __BEGIN__; size_t data_size; float* zero_approx; int m; int i, j; if( trees == NULL ) { CV_ERROR( CV_StsNullPtr, "Invalid trees parameter" ); } if( type < CV_DABCLASS || type > CV_MREG ) { CV_ERROR( CV_StsUnsupportedFormat, "Unsupported type parameter" ); } if( type == CV_LKCLASS ) { CV_ASSERT( numclasses >= 2 ); } else { numclasses = 1; } m = MAX( trainClasses->rows, trainClasses->cols ); ptr = NULL; data_size = sizeof( *ptr ); if( type > CV_GABCLASS ) { data_size += m * numclasses * sizeof( *(ptr->f) ); } CV_CALL( ptr = (CvBtTrainer*) cvAlloc( data_size ) ); memset( ptr, 0, data_size ); ptr->f = (float*) (ptr + 1); ptr->trainData = trainData; ptr->flags = flags; ptr->trainClasses = trainClasses; CV_MAT2VEC( *trainClasses, ptr->ydata, ptr->ystep, ptr->m ); memset( &(ptr->cartParams), 0, sizeof( ptr->cartParams ) ); memset( &(ptr->stumpParams), 0, sizeof( ptr->stumpParams ) ); switch( type ) { case CV_DABCLASS: ptr->stumpParams.error = CV_MISCLASSIFICATION; ptr->stumpParams.type = CV_CLASSIFICATION_CLASS; break; case CV_RABCLASS: ptr->stumpParams.error = CV_GINI; ptr->stumpParams.type = CV_CLASSIFICATION; break; default: ptr->stumpParams.error = CV_SQUARE; ptr->stumpParams.type = CV_REGRESSION; } ptr->cartParams.count = numsplits; ptr->cartParams.stumpTrainParams = (CvClassifierTrainParams*) &(ptr->stumpParams); ptr->cartParams.stumpConstructor = cvCreateMTStumpClassifier; ptr->param[0] = param[0]; ptr->param[1] = param[1]; ptr->type = type; ptr->numclasses = numclasses; CV_CALL( ptr->y = cvCreateMat( 1, m, CV_32FC1 ) ); ptr->sampleIdx = sampleIdx; ptr->numsamples = ( sampleIdx == NULL ) ?

    ptr->m : MAX( sampleIdx->rows, sampleIdx->cols ); ptr->weights = cvCreateMat( 1, m, CV_32FC1 ); cvSet( ptr->weights, cvScalar( 1.0 ) ); if( type <= CV_GABCLASS ) { ptr->boosttrainer = cvBoostStartTraining( ptr->trainClasses, ptr->y, ptr->weights, NULL, type ); CV_CALL( cvBtNext( trees, ptr ) ); } else { data_size = sizeof( *zero_approx ) * numclasses; CV_CALL( zero_approx = (float*) cvAlloc( data_size ) ); icvZeroApproxFunc[type]( zero_approx, ptr ); for( i = 0; i < m; i++ ) { for( j = 0; j < numclasses; j++ ) { ptr->f[i * numclasses + j] = zero_approx[j]; } } CV_CALL( cvBtNext( trees, ptr ) ); for( i = 0; i < numclasses; i++ ) { for( j = 0; j <= trees[i]->count; j++ ) { trees[i]->val[j] += zero_approx[i]; } } CV_CALL( cvFree( &zero_approx ) ); } __END__; return ptr; } static void icvBtNext_LSREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) { int i; /* yhat_i = y_i - F_(m-1)(x_i) */ for( i = 0; i < trainer->m; i++ ) { trainer->y->data.fl[i] = *((float*) (trainer->ydata + i * trainer->ystep)) - trainer->f[i]; } trees[0] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); } static void icvBtNext_LADREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) { CvCARTClassifier* ptr; int i, j; CvMat sample; int sample_step; uchar* sample_data; int index; int data_size; int* idx; float* resp; int respnum; float val; data_size = trainer->m * sizeof( *idx ); idx = (int*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *resp ); resp = (float*) cvAlloc( data_size ); /* yhat_i = sign(y_i - F_(m-1)(x_i)) */ for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); trainer->y->data.fl[index] = (float) CV_SIGN( *((float*) (trainer->ydata + index * trainer->ystep)) - trainer->f[index] ); } ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); sample.data.ptr = sample_data + index * sample_step; idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); } for( j = 0; j <= ptr->count; j++ ) { respnum = 0; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); if( idx[index] == j ) { resp[respnum++] = *((float*) (trainer->ydata + index * trainer->ystep)) - trainer->f[index]; } } if( respnum > 0 ) { icvSort_32f( resp, respnum, 0 ); val = resp[respnum / 2]; } else { val = 0.0F; } ptr->val[j] = val; } cvFree( &idx ); cvFree( &resp ); trees[0] = ptr; } static void icvBtNext_MREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) { CvCARTClassifier* ptr; int i, j; CvMat sample; int sample_step; uchar* sample_data; int data_size; int* idx; float* resid; float* resp; int respnum; float rhat; float val; float delta; int index; data_size = trainer->m * sizeof( *idx ); idx = (int*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *resp ); resp = (float*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *resid ); resid = (float*) cvAlloc( data_size ); /* resid_i = (y_i - F_(m-1)(x_i)) */ for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); resid[index] = *((float*) (trainer->ydata + index * trainer->ystep)) - trainer->f[index]; /* for delta */ resp[i] = (float) fabs( resid[index] ); } /* delta = quantile_alpha{abs(resid_i)} */ icvSort_32f( resp, trainer->numsamples, 0 ); delta = resp[(int)(trainer->param[1] * (trainer->numsamples - 1))]; /* yhat_i */ for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); trainer->y->data.fl[index] = MIN( delta, ((float) fabs( resid[index] )) ) * CV_SIGN( resid[index] ); } ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); sample.data.ptr = sample_data + index * sample_step; idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); } for( j = 0; j <= ptr->count; j++ ) { respnum = 0; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); if( idx[index] == j ) { resp[respnum++] = *((float*) (trainer->ydata + index * trainer->ystep)) - trainer->f[index]; } } if( respnum > 0 ) { /* rhat = median(y_i - F_(m-1)(x_i)) */ icvSort_32f( resp, respnum, 0 ); rhat = resp[respnum / 2]; /* val = sum{sign(r_i - rhat_i) * min(delta, abs(r_i - rhat_i)} * r_i = y_i - F_(m-1)(x_i) */ val = 0.0F; for( i = 0; i < respnum; i++ ) { val += CV_SIGN( resp[i] - rhat ) * MIN( delta, (float) fabs( resp[i] - rhat ) ); } val = rhat + val / (float) respnum; } else { val = 0.0F; } ptr->val[j] = val; } cvFree( &resid ); cvFree( &resp ); cvFree( &idx ); trees[0] = ptr; } //#define CV_VAL_MAX 1e304 //#define CV_LOG_VAL_MAX 700.0 #define CV_VAL_MAX 1e+8 #define CV_LOG_VAL_MAX 18.0 static void icvBtNext_L2CLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) { CvCARTClassifier* ptr; int i, j; CvMat sample; int sample_step; uchar* sample_data; int data_size; int* idx; int respnum; float val; double val_f; float sum_weights; float* weights; float* sorted_weights; CvMat* trimmed_idx; CvMat* sample_idx; int index; int trimmed_num; data_size = trainer->m * sizeof( *idx ); idx = (int*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *weights ); weights = (float*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *sorted_weights ); sorted_weights = (float*) cvAlloc( data_size ); /* yhat_i = (4 * y_i - 2) / ( 1 + exp( (4 * y_i - 2) * F_(m-1)(x_i) ) ). * y_i in {0, 1} */ sum_weights = 0.0F; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); val = 4.0F * (*((float*) (trainer->ydata + index * trainer->ystep))) - 2.0F; val_f = val * trainer->f[index]; val_f = ( val_f < CV_LOG_VAL_MAX ) ? exp( val_f ) : CV_LOG_VAL_MAX; val = (float) ( (double) val / ( 1.0 + val_f ) ); trainer->y->data.fl[index] = val; val = (float) fabs( val ); weights[index] = val * (2.0F - val); sorted_weights[i] = weights[index]; sum_weights += sorted_weights[i]; } trimmed_idx = NULL; sample_idx = trainer->sampleIdx; trimmed_num = trainer->numsamples; if( trainer->param[1] < 1.0F ) { /* perform weight trimming */ float threshold; int count; icvSort_32f( sorted_weights, trainer->numsamples, 0 ); sum_weights *= (1.0F - trainer->param[1]); i = -1; do { sum_weights -= sorted_weights[++i]; } while( sum_weights > 0.0F && i < (trainer->numsamples - 1) ); threshold = sorted_weights[i]; while( i > 0 && sorted_weights[i-1] == threshold ) i--; if( i > 0 ) { trimmed_num = trainer->numsamples - i; trimmed_idx = cvCreateMat( 1, trimmed_num, CV_32FC1 ); count = 0; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); if( weights[index] >= threshold ) { CV_MAT_ELEM( *trimmed_idx, float, 0, count ) = (float) index; count++; } } assert( count == trimmed_num ); sample_idx = trimmed_idx; printf( "Used samples %%: %g ", (float) trimmed_num / (float) trainer->numsamples * 100.0F ); } } ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, sample_idx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trimmed_num; i++ ) { index = icvGetIdxAt( sample_idx, i ); sample.data.ptr = sample_data + index * sample_step; idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); } for( j = 0; j <= ptr->count; j++ ) { respnum = 0; val = 0.0F; sum_weights = 0.0F; for( i = 0; i < trimmed_num; i++ ) { index = icvGetIdxAt( sample_idx, i ); if( idx[index] == j ) { val += trainer->y->data.fl[index]; sum_weights += weights[index]; respnum++; } } if( sum_weights > 0.0F ) { val /= sum_weights; } else { val = 0.0F; } ptr->val[j] = val; } if( trimmed_idx != NULL ) cvReleaseMat( &trimmed_idx ); cvFree( &sorted_weights ); cvFree( &weights ); cvFree( &idx ); trees[0] = ptr; } static void icvBtNext_LKCLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) { int i, j, k, kk, num; CvMat sample; int sample_step; uchar* sample_data; int data_size; int* idx; int respnum; float val; float sum_weights; float* weights; float* sorted_weights; CvMat* trimmed_idx; CvMat* sample_idx; int index; int trimmed_num; double sum_exp_f; double exp_f; double f_k; data_size = trainer->m * sizeof( *idx ); idx = (int*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *weights ); weights = (float*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *sorted_weights ); sorted_weights = (float*) cvAlloc( data_size ); trimmed_idx = cvCreateMat( 1, trainer->numsamples, CV_32FC1 ); for( k = 0; k < trainer->numclasses; k++ ) { /* yhat_i = y_i - p_k(x_i), y_i in {0, 1} */ /* p_k(x_i) = exp(f_k(x_i)) / (sum_exp_f(x_i)) */ sum_weights = 0.0F; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); /* p_k(x_i) = 1 / (1 + sum(exp(f_kk(x_i) - f_k(x_i)))), kk != k */ num = index * trainer->numclasses; f_k = (double) trainer->f[num + k]; sum_exp_f = 1.0; for( kk = 0; kk < trainer->numclasses; kk++ ) { if( kk == k ) continue; exp_f = (double) trainer->f[num + kk] - f_k; exp_f = (exp_f < CV_LOG_VAL_MAX) ?

    exp( exp_f ) : CV_VAL_MAX; if( exp_f == CV_VAL_MAX || exp_f >= (CV_VAL_MAX - sum_exp_f) ) { sum_exp_f = CV_VAL_MAX; break; } sum_exp_f += exp_f; } val = (float) ( (*((float*) (trainer->ydata + index * trainer->ystep))) == (float) k ); val -= (float) ( (sum_exp_f == CV_VAL_MAX) ? 0.0 : ( 1.0 / sum_exp_f ) ); assert( val >= -1.0F ); assert( val <= 1.0F ); trainer->y->data.fl[index] = val; val = (float) fabs( val ); weights[index] = val * (1.0F - val); sorted_weights[i] = weights[index]; sum_weights += sorted_weights[i]; } sample_idx = trainer->sampleIdx; trimmed_num = trainer->numsamples; if( trainer->param[1] < 1.0F ) { /* perform weight trimming */ float threshold; int count; icvSort_32f( sorted_weights, trainer->numsamples, 0 ); sum_weights *= (1.0F - trainer->param[1]); i = -1; do { sum_weights -= sorted_weights[++i]; } while( sum_weights > 0.0F && i < (trainer->numsamples - 1) ); threshold = sorted_weights[i]; while( i > 0 && sorted_weights[i-1] == threshold ) i--; if( i > 0 ) { trimmed_num = trainer->numsamples - i; trimmed_idx->cols = trimmed_num; count = 0; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); if( weights[index] >= threshold ) { CV_MAT_ELEM( *trimmed_idx, float, 0, count ) = (float) index; count++; } } assert( count == trimmed_num ); sample_idx = trimmed_idx; printf( "k: %d Used samples %%: %g ", k, (float) trimmed_num / (float) trainer->numsamples * 100.0F ); } } /* weight trimming */ trees[k] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, sample_idx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trimmed_num; i++ ) { index = icvGetIdxAt( sample_idx, i ); sample.data.ptr = sample_data + index * sample_step; idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) trees[k], &sample ); } for( j = 0; j <= trees[k]->count; j++ ) { respnum = 0; val = 0.0F; sum_weights = 0.0F; for( i = 0; i < trimmed_num; i++ ) { index = icvGetIdxAt( sample_idx, i ); if( idx[index] == j ) { val += trainer->y->data.fl[index]; sum_weights += weights[index]; respnum++; } } if( sum_weights > 0.0F ) { val = ((float) (trainer->numclasses - 1)) * val / ((float) (trainer->numclasses)) / sum_weights; } else { val = 0.0F; } trees[k]->val[j] = val; } } /* for each class */ cvReleaseMat( &trimmed_idx ); cvFree( &sorted_weights ); cvFree( &weights ); cvFree( &idx ); } static void icvBtNext_XXBCLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) { float alpha; int i; CvMat* weak_eval_vals; CvMat* sample_idx; int num_samples; CvMat sample; uchar* sample_data; int sample_step; weak_eval_vals = cvCreateMat( 1, trainer->m, CV_32FC1 ); sample_idx = cvTrimWeights( trainer->weights, trainer->sampleIdx, trainer->param[1] ); num_samples = ( sample_idx == NULL ) ? trainer->m : MAX( sample_idx->rows, sample_idx->cols ); printf( "Used samples %%: %g ", (float) num_samples / (float) trainer->numsamples * 100.0F ); trees[0] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, sample_idx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); /* evaluate samples */ CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trainer->m; i++ ) { sample.data.ptr = sample_data + i * sample_step; weak_eval_vals->data.fl[i] = trees[0]->eval( (CvClassifier*) trees[0], &sample ); } alpha = cvBoostNextWeakClassifier( weak_eval_vals, trainer->trainClasses, trainer->y, trainer->weights, trainer->boosttrainer ); /* multiply tree by alpha */ for( i = 0; i <= trees[0]->count; i++ ) { trees[0]->val[i] *= alpha; } if( trainer->type == CV_RABCLASS ) { for( i = 0; i <= trees[0]->count; i++ ) { trees[0]->val[i] = cvLogRatio( trees[0]->val[i] ); } } if( sample_idx != NULL && sample_idx != trainer->sampleIdx ) { cvReleaseMat( &sample_idx ); } cvReleaseMat( &weak_eval_vals ); } typedef void (*CvBtNextFunc)( CvCARTClassifier** trees, CvBtTrainer* trainer ); static CvBtNextFunc icvBtNextFunc[] = { icvBtNext_XXBCLASS, icvBtNext_XXBCLASS, icvBtNext_XXBCLASS, icvBtNext_XXBCLASS, icvBtNext_L2CLASS, icvBtNext_LKCLASS, icvBtNext_LSREG, icvBtNext_LADREG, icvBtNext_MREG }; CV_BOOST_IMPL void cvBtNext( CvCARTClassifier** trees, CvBtTrainer* trainer ) { int i, j; int index; CvMat sample; int sample_step; uchar* sample_data; icvBtNextFunc[trainer->type]( trees, trainer ); /* shrinkage */ if( trainer->param[0] != 1.0F ) { for( j = 0; j < trainer->numclasses; j++ ) { for( i = 0; i <= trees[j]->count; i++ ) { trees[j]->val[i] *= trainer->param[0]; } } } if( trainer->type > CV_GABCLASS ) { /* update F_(m-1) */ CV_GET_SAMPLE( *(trainer->trainData), trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *(trainer->trainData), trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); sample.data.ptr = sample_data + index * sample_step; for( j = 0; j < trainer->numclasses; j++ ) { trainer->f[index * trainer->numclasses + j] += trees[j]->eval( (CvClassifier*) (trees[j]), &sample ); } } } } static void cvBtEnd( CvBtTrainer** trainer ) { CV_FUNCNAME( "cvBtEnd" ); __BEGIN__; if( trainer == NULL || (*trainer) == NULL ) { CV_ERROR( CV_StsNullPtr, "Invalid trainer parameter" ); } if( (*trainer)->y != NULL ) { CV_CALL( cvReleaseMat( &((*trainer)->y) ) ); } if( (*trainer)->weights != NULL ) { CV_CALL( cvReleaseMat( &((*trainer)->weights) ) ); } if( (*trainer)->boosttrainer != NULL ) { CV_CALL( cvBoostEndTraining( &((*trainer)->boosttrainer) ) ); } CV_CALL( cvFree( trainer ) ); __END__; } /**************************************************************************************** * Boosted tree model as a classifier * ****************************************************************************************/ static float cvEvalBtClassifier( CvClassifier* classifier, CvMat* sample ) { float val; CV_FUNCNAME( "cvEvalBtClassifier" ); __BEGIN__; int i; val = 0.0F; if( CV_IS_TUNABLE( classifier->flags ) ) { CvSeqReader reader; CvCARTClassifier* tree; CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) { CV_READ_SEQ_ELEM( tree, reader ); val += tree->eval( (CvClassifier*) tree, sample ); } } else { CvCARTClassifier** ptree; ptree = ((CvBtClassifier*) classifier)->trees; for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) { val += (*ptree)->eval( (CvClassifier*) (*ptree), sample ); ptree++; } } __END__; return val; } static float cvEvalBtClassifier2( CvClassifier* classifier, CvMat* sample ) { float val; CV_FUNCNAME( "cvEvalBtClassifier2" ); __BEGIN__; CV_CALL( val = cvEvalBtClassifier( classifier, sample ) ); __END__; return (float) (val >= 0.0F); } static float cvEvalBtClassifierK( CvClassifier* classifier, CvMat* sample ) { int cls = 0; CV_FUNCNAME( "cvEvalBtClassifierK" ); __BEGIN__; int i, k; float max_val; int numclasses; float* vals; size_t data_size; numclasses = ((CvBtClassifier*) classifier)->numclasses; data_size = sizeof( *vals ) * numclasses; CV_CALL( vals = (float*) cvAlloc( data_size ) ); memset( vals, 0, data_size ); if( CV_IS_TUNABLE( classifier->flags ) ) { CvSeqReader reader; CvCARTClassifier* tree; CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) { for( k = 0; k < numclasses; k++ ) { CV_READ_SEQ_ELEM( tree, reader ); vals[k] += tree->eval( (CvClassifier*) tree, sample ); } } } else { CvCARTClassifier** ptree; ptree = ((CvBtClassifier*) classifier)->trees; for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) { for( k = 0; k < numclasses; k++ ) { vals[k] += (*ptree)->eval( (CvClassifier*) (*ptree), sample ); ptree++; } } } max_val = vals[cls]; for( k = 1; k < numclasses; k++ ) { if( vals[k] > max_val ) { max_val = vals[k]; cls = k; } } CV_CALL( cvFree( &vals ) ); __END__; return (float) cls; } typedef float (*CvEvalBtClassifier)( CvClassifier* classifier, CvMat* sample ); static CvEvalBtClassifier icvEvalBtClassifier[] = { cvEvalBtClassifier2, cvEvalBtClassifier2, cvEvalBtClassifier2, cvEvalBtClassifier2, cvEvalBtClassifier2, cvEvalBtClassifierK, cvEvalBtClassifier, cvEvalBtClassifier, cvEvalBtClassifier }; static int cvSaveBtClassifier( CvClassifier* classifier, const char* filename ) { CV_FUNCNAME( "cvSaveBtClassifier" ); __BEGIN__; FILE* file; int i, j; CvSeqReader reader; memset(&reader, 0, sizeof(reader)); CvCARTClassifier* tree; CV_ASSERT( classifier ); CV_ASSERT( filename ); if( !icvMkDir( filename ) || (file = fopen( filename, "w" )) == 0 ) { CV_ERROR( CV_StsError, "Unable to create file" ); } if( CV_IS_TUNABLE( classifier->flags ) ) { CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); } fprintf( file, "%d %d %d %d ", (int) ((CvBtClassifier*) classifier)->type, ((CvBtClassifier*) classifier)->numclasses, ((CvBtClassifier*) classifier)->numfeatures, ((CvBtClassifier*) classifier)->numiter ); for( i = 0; i < ((CvBtClassifier*) classifier)->numclasses * ((CvBtClassifier*) classifier)->numiter; i++ ) { if( CV_IS_TUNABLE( classifier->flags ) ) { CV_READ_SEQ_ELEM( tree, reader ); } else { tree = ((CvBtClassifier*) classifier)->trees[i]; } fprintf( file, "%d ", tree->count ); for( j = 0; j < tree->count; j++ ) { fprintf( file, "%d %g %d %d ", tree->compidx[j], tree->threshold[j], tree->left[j], tree->right[j] ); } for( j = 0; j <= tree->count; j++ ) { fprintf( file, "%g ", tree->val[j] ); } fprintf( file, " " ); } fclose( file ); __END__; return 1; } static void cvReleaseBtClassifier( CvClassifier** ptr ) { CV_FUNCNAME( "cvReleaseBtClassifier" ); __BEGIN__; int i; if( ptr == NULL || *ptr == NULL ) { CV_ERROR( CV_StsNullPtr, "" ); } if( CV_IS_TUNABLE( (*ptr)->flags ) ) { CvSeqReader reader; CvCARTClassifier* tree; CV_CALL( cvStartReadSeq( ((CvBtClassifier*) *ptr)->seq, &reader ) ); for( i = 0; i < ((CvBtClassifier*) *ptr)->numclasses * ((CvBtClassifier*) *ptr)->numiter; i++ ) { CV_READ_SEQ_ELEM( tree, reader ); tree->release( (CvClassifier**) (&tree) ); } CV_CALL( cvReleaseMemStorage( &(((CvBtClassifier*) *ptr)->seq->storage) ) ); } else { CvCARTClassifier** ptree; ptree = ((CvBtClassifier*) *ptr)->trees; for( i = 0; i < ((CvBtClassifier*) *ptr)->numclasses * ((CvBtClassifier*) *ptr)->numiter; i++ ) { (*ptree)->release( (CvClassifier**) ptree ); ptree++; } } CV_CALL( cvFree( ptr ) ); *ptr = NULL; __END__; } static void cvTuneBtClassifier( CvClassifier* classifier, CvMat*, int flags, CvMat*, CvMat* , CvMat*, CvMat*, CvMat* ) { CV_FUNCNAME( "cvTuneBtClassifier" ); __BEGIN__; size_t data_size; if( CV_IS_TUNABLE( flags ) ) { if( !CV_IS_TUNABLE( classifier->flags ) ) { CV_ERROR( CV_StsUnsupportedFormat, "Classifier does not support tune function" ); } else { /* tune classifier */ CvCARTClassifier** trees; printf( "Iteration %d ", ((CvBtClassifier*) classifier)->numiter + 1 ); data_size = sizeof( *trees ) * ((CvBtClassifier*) classifier)->numclasses; CV_CALL( trees = (CvCARTClassifier**) cvAlloc( data_size ) ); CV_CALL( cvBtNext( trees, (CvBtTrainer*) ((CvBtClassifier*) classifier)->trainer ) ); CV_CALL( cvSeqPushMulti( ((CvBtClassifier*) classifier)->seq, trees, ((CvBtClassifier*) classifier)->numclasses ) ); CV_CALL( cvFree( &trees ) ); ((CvBtClassifier*) classifier)->numiter++; } } else { if( CV_IS_TUNABLE( classifier->flags ) ) { /* convert */ void* ptr; assert( ((CvBtClassifier*) classifier)->seq->total == ((CvBtClassifier*) classifier)->numiter * ((CvBtClassifier*) classifier)->numclasses ); data_size = sizeof( ((CvBtClassifier*) classifier)->trees[0] ) * ((CvBtClassifier*) classifier)->seq->total; CV_CALL( ptr = cvAlloc( data_size ) ); CV_CALL( cvCvtSeqToArray( ((CvBtClassifier*) classifier)->seq, ptr ) ); CV_CALL( cvReleaseMemStorage( &(((CvBtClassifier*) classifier)->seq->storage) ) ); ((CvBtClassifier*) classifier)->trees = (CvCARTClassifier**) ptr; classifier->flags &= ~CV_TUNABLE; CV_CALL( cvBtEnd( (CvBtTrainer**) &(((CvBtClassifier*) classifier)->trainer )) ); ((CvBtClassifier*) classifier)->trainer = NULL; } } __END__; } static CvBtClassifier* icvAllocBtClassifier( CvBoostType type, int flags, int numclasses, int numiter ) { CvBtClassifier* ptr; size_t data_size; assert( numclasses >= 1 ); assert( numiter >= 0 ); assert( ( numclasses == 1 ) || (type == CV_LKCLASS) ); data_size = sizeof( *ptr ); ptr = (CvBtClassifier*) cvAlloc( data_size ); memset( ptr, 0, data_size ); if( CV_IS_TUNABLE( flags ) ) { ptr->seq = cvCreateSeq( 0, sizeof( *(ptr->seq) ), sizeof( *(ptr->trees) ), cvCreateMemStorage() ); ptr->numiter = 0; } else { data_size = numclasses * numiter * sizeof( *(ptr->trees) ); ptr->trees = (CvCARTClassifier**) cvAlloc( data_size ); memset( ptr->trees, 0, data_size ); ptr->numiter = numiter; } ptr->flags = flags; ptr->numclasses = numclasses; ptr->type = type; ptr->eval = icvEvalBtClassifier[(int) type]; ptr->tune = cvTuneBtClassifier; ptr->save = cvSaveBtClassifier; ptr->release = cvReleaseBtClassifier; return ptr; } CV_BOOST_IMPL CvClassifier* cvCreateBtClassifier( CvMat* trainData, int flags, CvMat* trainClasses, CvMat* typeMask, CvMat* missedMeasurementsMask, CvMat* compIdx, CvMat* sampleIdx, CvMat* weights, CvClassifierTrainParams* trainParams ) { CvBtClassifier* ptr = 0; CV_FUNCNAME( "cvCreateBtClassifier" ); __BEGIN__; CvBoostType type; int num_classes; int num_iter; int i; CvCARTClassifier** trees; size_t data_size; CV_ASSERT( trainData != NULL ); CV_ASSERT( trainClasses != NULL ); CV_ASSERT( typeMask == NULL ); CV_ASSERT( missedMeasurementsMask == NULL ); CV_ASSERT( compIdx == NULL ); CV_ASSERT( weights == NULL ); CV_ASSERT( trainParams != NULL ); type = ((CvBtClassifierTrainParams*) trainParams)->type; if( type >= CV_DABCLASS && type <= CV_GABCLASS && sampleIdx ) { CV_ERROR( CV_StsBadArg, "Sample indices are not supported for this type" ); } if( type == CV_LKCLASS ) { double min_val; double max_val; cvMinMaxLoc( trainClasses, &min_val, &max_val ); num_classes = (int) (max_val + 1.0); CV_ASSERT( num_classes >= 2 ); } else { num_classes = 1; } num_iter = ((CvBtClassifierTrainParams*) trainParams)->numiter; CV_ASSERT( num_iter > 0 ); ptr = icvAllocBtClassifier( type, CV_TUNABLE | flags, num_classes, num_iter ); ptr->numfeatures = (CV_IS_ROW_SAMPLE( flags )) ?

    trainData->cols : trainData->rows; i = 0; printf( "Iteration %d ", 1 ); data_size = sizeof( *trees ) * ptr->numclasses; CV_CALL( trees = (CvCARTClassifier**) cvAlloc( data_size ) ); CV_CALL( ptr->trainer = cvBtStart( trees, trainData, flags, trainClasses, sampleIdx, ((CvBtClassifierTrainParams*) trainParams)->numsplits, type, num_classes, &(((CvBtClassifierTrainParams*) trainParams)->param[0]) ) ); CV_CALL( cvSeqPushMulti( ptr->seq, trees, ptr->numclasses ) ); CV_CALL( cvFree( &trees ) ); ptr->numiter++; for( i = 1; i < num_iter; i++ ) { ptr->tune( (CvClassifier*) ptr, NULL, CV_TUNABLE, NULL, NULL, NULL, NULL, NULL ); } if( !CV_IS_TUNABLE( flags ) ) { /* convert */ ptr->tune( (CvClassifier*) ptr, NULL, 0, NULL, NULL, NULL, NULL, NULL ); } __END__; return (CvClassifier*) ptr; } CV_BOOST_IMPL CvClassifier* cvCreateBtClassifierFromFile( const char* filename ) { CvBtClassifier* ptr = 0; CV_FUNCNAME( "cvCreateBtClassifierFromFile" ); __BEGIN__; FILE* file; int i, j; int data_size; int num_classifiers; int num_features; int num_classes; int type; int values_read = -1; CV_ASSERT( filename != NULL ); ptr = NULL; file = fopen( filename, "r" ); if( !file ) { CV_ERROR( CV_StsError, "Unable to open file" ); } values_read = fscanf( file, "%d %d %d %d", &type, &num_classes, &num_features, &num_classifiers ); CV_Assert(values_read == 4); CV_ASSERT( type >= (int) CV_DABCLASS && type <= (int) CV_MREG ); CV_ASSERT( num_features > 0 ); CV_ASSERT( num_classifiers > 0 ); if( (CvBoostType) type != CV_LKCLASS ) { num_classes = 1; } ptr = icvAllocBtClassifier( (CvBoostType) type, 0, num_classes, num_classifiers ); ptr->numfeatures = num_features; for( i = 0; i < num_classes * num_classifiers; i++ ) { int count; CvCARTClassifier* tree; values_read = fscanf( file, "%d", &count ); CV_Assert(values_read == 1); data_size = sizeof( *tree ) + count * ( sizeof( *(tree->compidx) ) + sizeof( *(tree->threshold) ) + sizeof( *(tree->right) ) + sizeof( *(tree->left) ) ) + (count + 1) * ( sizeof( *(tree->val) ) ); CV_CALL( tree = (CvCARTClassifier*) cvAlloc( data_size ) ); memset( tree, 0, data_size ); tree->eval = cvEvalCARTClassifier; tree->tune = NULL; tree->save = NULL; tree->release = cvReleaseCARTClassifier; tree->compidx = (int*) ( tree + 1 ); tree->threshold = (float*) ( tree->compidx + count ); tree->left = (int*) ( tree->threshold + count ); tree->right = (int*) ( tree->left + count ); tree->val = (float*) ( tree->right + count ); tree->count = count; for( j = 0; j < tree->count; j++ ) { values_read = fscanf( file, "%d %g %d %d", &(tree->compidx[j]), &(tree->threshold[j]), &(tree->left[j]), &(tree->right[j]) ); CV_Assert(values_read == 4); } for( j = 0; j <= tree->count; j++ ) { values_read = fscanf( file, "%g", &(tree->val[j]) ); CV_Assert(values_read == 1); } ptr->trees[i] = tree; } fclose( file ); __END__; return (CvClassifier*) ptr; } /**************************************************************************************** * Utility functions * ****************************************************************************************/ CV_BOOST_IMPL CvMat* cvTrimWeights( CvMat* weights, CvMat* idx, float factor ) { CvMat* ptr = 0; CV_FUNCNAME( "cvTrimWeights" ); __BEGIN__; int i, index, num; float sum_weights; uchar* wdata; size_t wstep; int wnum; float threshold; int count; float* sorted_weights; CV_ASSERT( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); ptr = idx; sorted_weights = NULL; if( factor > 0.0F && factor < 1.0F ) { size_t data_size; CV_MAT2VEC( *weights, wdata, wstep, wnum ); num = ( idx == NULL ) ?

    wnum : MAX( idx->rows, idx->cols ); data_size = num * sizeof( *sorted_weights ); sorted_weights = (float*) cvAlloc( data_size ); memset( sorted_weights, 0, data_size ); sum_weights = 0.0F; for( i = 0; i < num; i++ ) { index = icvGetIdxAt( idx, i ); sorted_weights[i] = *((float*) (wdata + index * wstep)); sum_weights += sorted_weights[i]; } icvSort_32f( sorted_weights, num, 0 ); sum_weights *= (1.0F - factor); i = -1; do { sum_weights -= sorted_weights[++i]; } while( sum_weights > 0.0F && i < (num - 1) ); threshold = sorted_weights[i]; while( i > 0 && sorted_weights[i-1] == threshold ) i--; if( i > 0 || ( idx != NULL && CV_MAT_TYPE( idx->type ) != CV_32FC1 ) ) { CV_CALL( ptr = cvCreateMat( 1, num - i, CV_32FC1 ) ); count = 0; for( i = 0; i < num; i++ ) { index = icvGetIdxAt( idx, i ); if( *((float*) (wdata + index * wstep)) >= threshold ) { CV_MAT_ELEM( *ptr, float, 0, count ) = (float) index; count++; } } assert( count == ptr->cols ); } cvFree( &sorted_weights ); } __END__; return ptr; } CV_BOOST_IMPL void cvReadTrainData( const char* filename, int flags, CvMat** trainData, CvMat** trainClasses ) { CV_FUNCNAME( "cvReadTrainData" ); __BEGIN__; FILE* file; int m, n; int i, j; float val; int values_read = -1; if( filename == NULL ) { CV_ERROR( CV_StsNullPtr, "filename must be specified" ); } if( trainData == NULL ) { CV_ERROR( CV_StsNullPtr, "trainData must be not NULL" ); } if( trainClasses == NULL ) { CV_ERROR( CV_StsNullPtr, "trainClasses must be not NULL" ); } *trainData = NULL; *trainClasses = NULL; file = fopen( filename, "r" ); if( !file ) { CV_ERROR( CV_StsError, "Unable to open file" ); } values_read = fscanf( file, "%d %d", &m, &n ); CV_Assert(values_read == 2); if( CV_IS_ROW_SAMPLE( flags ) ) { CV_CALL( *trainData = cvCreateMat( m, n, CV_32FC1 ) ); } else { CV_CALL( *trainData = cvCreateMat( n, m, CV_32FC1 ) ); } CV_CALL( *trainClasses = cvCreateMat( 1, m, CV_32FC1 ) ); for( i = 0; i < m; i++ ) { for( j = 0; j < n; j++ ) { values_read = fscanf( file, "%f", &val ); CV_Assert(values_read == 1); if( CV_IS_ROW_SAMPLE( flags ) ) { CV_MAT_ELEM( **trainData, float, i, j ) = val; } else { CV_MAT_ELEM( **trainData, float, j, i ) = val; } } values_read = fscanf( file, "%f", &val ); CV_Assert(values_read == 2); CV_MAT_ELEM( **trainClasses, float, 0, i ) = val; } fclose( file ); __END__; } CV_BOOST_IMPL void cvWriteTrainData( const char* filename, int flags, CvMat* trainData, CvMat* trainClasses, CvMat* sampleIdx ) { CV_FUNCNAME( "cvWriteTrainData" ); __BEGIN__; FILE* file; int m, n; int i, j; int clsrow; int count; int idx; CvScalar sc; if( filename == NULL ) { CV_ERROR( CV_StsNullPtr, "filename must be specified" ); } if( trainData == NULL || CV_MAT_TYPE( trainData->type ) != CV_32FC1 ) { CV_ERROR( CV_StsUnsupportedFormat, "Invalid trainData" ); } if( CV_IS_ROW_SAMPLE( flags ) ) { m = trainData->rows; n = trainData->cols; } else { n = trainData->rows; m = trainData->cols; } if( trainClasses == NULL || CV_MAT_TYPE( trainClasses->type ) != CV_32FC1 || MIN( trainClasses->rows, trainClasses->cols ) != 1 ) { CV_ERROR( CV_StsUnsupportedFormat, "Invalid trainClasses" ); } clsrow = (trainClasses->rows == 1); if( m != ( (clsrow) ?

    trainClasses->cols : trainClasses->rows ) ) { CV_ERROR( CV_StsUnmatchedSizes, "Incorrect trainData and trainClasses sizes" ); } if( sampleIdx != NULL ) { count = (sampleIdx->rows == 1) ? sampleIdx->cols : sampleIdx->rows; } else { count = m; } file = fopen( filename, "w" ); if( !file ) { CV_ERROR( CV_StsError, "Unable to create file" ); } fprintf( file, "%d %d ", count, n ); for( i = 0; i < count; i++ ) { if( sampleIdx ) { if( sampleIdx->rows == 1 ) { sc = cvGet2D( sampleIdx, 0, i ); } else { sc = cvGet2D( sampleIdx, i, 0 ); } idx = (int) sc.val[0]; } else { idx = i; } for( j = 0; j < n; j++ ) { fprintf( file, "%g ", ( (CV_IS_ROW_SAMPLE( flags )) ?

    CV_MAT_ELEM( *trainData, float, idx, j ) : CV_MAT_ELEM( *trainData, float, j, idx ) ) ); } fprintf( file, "%g ", ( (clsrow) ?

    CV_MAT_ELEM( *trainClasses, float, 0, idx ) : CV_MAT_ELEM( *trainClasses, float, idx, 0 ) ) ); } fclose( file ); __END__; } #define ICV_RAND_SHUFFLE( suffix, type ) static void icvRandShuffle_##suffix( uchar* data, size_t step, int num ) { time_t seed; type tmp; int i; float rn; time( &seed ); CvRNG state = cvRNG((int)seed); for( i = 0; i < (num-1); i++ ) { rn = ((float) cvRandInt( &state )) / (1.0F + UINT_MAX); CV_SWAP( *((type*)(data + i * step)), *((type*)(data + ( i + (int)( rn * (num - i ) ) )* step)), tmp ); } } ICV_RAND_SHUFFLE( 8U, uchar ) ICV_RAND_SHUFFLE( 16S, short ) ICV_RAND_SHUFFLE( 32S, int ) ICV_RAND_SHUFFLE( 32F, float ) CV_BOOST_IMPL void cvRandShuffleVec( CvMat* mat ) { CV_FUNCNAME( "cvRandShuffle" ); __BEGIN__; uchar* data; size_t step; int num; if( (mat == NULL) || !CV_IS_MAT( mat ) || MIN( mat->rows, mat->cols ) != 1 ) { CV_ERROR( CV_StsUnsupportedFormat, "" ); } CV_MAT2VEC( *mat, data, step, num ); switch( CV_MAT_TYPE( mat->type ) ) { case CV_8UC1: icvRandShuffle_8U( data, step, num); break; case CV_16SC1: icvRandShuffle_16S( data, step, num); break; case CV_32SC1: icvRandShuffle_32S( data, step, num); break; case CV_32FC1: icvRandShuffle_32F( data, step, num); break; default: CV_ERROR( CV_StsUnsupportedFormat, "" ); } __END__; } /* End of file. */



  • 相关阅读:
    「UVA12293」 Box Game
    「CF803C」 Maximal GCD
    「CF525D」Arthur and Walls
    「CF442C」 Artem and Array
    LeetCode lcci 16.03 交点
    LeetCode 1305 两棵二叉搜索树中的所有元素
    LeetCode 1040 移动石子直到连续 II
    LeetCode 664 奇怪的打印机
    iOS UIPageViewController系统方法崩溃修复
    LeetCode 334 递增的三元子序列
  • 原文地址:https://www.cnblogs.com/llguanli/p/8795525.html
Copyright © 2011-2022 走看看