zoukankan      html  css  js  c++  java
  • 《转》基于OpenCV的傅里叶变换及逆变换

    #include <stdio.h>
    #include <cv.h>
    #include <cxcore.h>
    #include <highgui.h>
    
    //傅里叶正变换
    void fft2(IplImage *src, IplImage *dst)
    {   //实部、虚部
     IplImage *image_Re = 0, *image_Im = 0, *Fourier = 0;
     //   int i, j;
     image_Re = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1);  //实部
     //Imaginary part
     image_Im = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1);  //虚部
     //2 channels (image_Re, image_Im)
     Fourier = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 2);
     // Real part conversion from u8 to 64f (double)
     cvConvertScale(src, image_Re, 1, 0);
     // Imaginary part (zeros)
     cvZero(image_Im);
     // Join real and imaginary parts and stock them in Fourier image
     cvMerge(image_Re, image_Im, 0, 0, Fourier);
     // Application of the forward Fourier transform
     cvDFT(Fourier, dst, CV_DXT_FORWARD);
     cvReleaseImage(&image_Re);
     cvReleaseImage(&image_Im);
     cvReleaseImage(&Fourier);
    }
    
    
    void fft2shift(IplImage *src, IplImage *dst)
    {
    IplImage *image_Re = 0, *image_Im = 0;
    int nRow, nCol, i, j, cy, cx;
    double scale, shift, tmp13, tmp24;
    image_Re = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1);
    //Imaginary part
    image_Im = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1);
    cvSplit( src, image_Re, image_Im, 0, 0 );
     //具体原理见冈萨雷斯数字图像处理p123
     // Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
     //计算傅里叶谱
     cvPow( image_Re, image_Re, 2.0);
     cvPow( image_Im, image_Im, 2.0);
     cvAdd( image_Re, image_Im, image_Re);
     cvPow( image_Re, image_Re, 0.5 );
     //对数变换以增强灰度级细节(这种变换使以窄带低灰度输入图像值映射
     //一宽带输出值,具体可见冈萨雷斯数字图像处理p62)
     // Compute log(1 + Mag);
     cvAddS( image_Re, cvScalar(1.0), image_Re ); // 1 + Mag
     cvLog( image_Re, image_Re ); // log(1 + Mag)
    
     //Rearrange the quadrants of Fourier image so that the origin is at the image center
     nRow = src->height;
     nCol = src->width;
     cy = nRow/2; // image center
     cx = nCol/2;
    //CV_IMAGE_ELEM为OpenCV定义的宏,用来读取图像的像素值,这一部分就是进行中心变换
     for( j = 0; j < cy; j++ ){
      for( i = 0; i < cx; i++ ){
       //中心化,将整体份成四块进行对角交换
       tmp13 = CV_IMAGE_ELEM( image_Re, double, j, i);
       CV_IMAGE_ELEM( image_Re, double, j, i) = CV_IMAGE_ELEM(
        image_Re, double, j+cy, i+cx);
       CV_IMAGE_ELEM( image_Re, double, j+cy, i+cx) = tmp13;
    
       tmp24 = CV_IMAGE_ELEM( image_Re, double, j, i+cx);
       CV_IMAGE_ELEM( image_Re, double, j, i+cx) =
        CV_IMAGE_ELEM( image_Re, double, j+cy, i);
       CV_IMAGE_ELEM( image_Re, double, j+cy, i) = tmp24;
      }
     }
        //归一化处理将矩阵的元素值归一为[0,255]
     //[(f(x,y)-minVal)/(maxVal-minVal)]*255
     double minVal = 0, maxVal = 0;
     // Localize minimum and maximum values
     cvMinMaxLoc( image_Re, &minVal, &maxVal );
     // Normalize image (0 - 255) to be observed as an u8 image
     scale = 255/(maxVal - minVal);
     shift = -minVal * scale;
     cvConvertScale(image_Re, dst, scale, shift);
     cvReleaseImage(&image_Re);
     cvReleaseImage(&image_Im);
    
    }
    
    
    int main()
    {
    IplImage *src;  //源图像
    IplImage *Fourier;   //傅里叶系数
    IplImage *dst ;
    IplImage *ImageRe;
    IplImage *ImageIm;
    IplImage *Image;
    IplImage *ImageDst;
    double m,M;
    double scale;
    double shift;
    src = cvLoadImage("D:\main.jpg",0);   //加载源图像,第二个参数表示将输入的图片转为单信道
    Fourier = cvCreateImage(cvGetSize(src),IPL_DEPTH_64F,2);
    dst = cvCreateImage(cvGetSize(src),IPL_DEPTH_64F,2);
    ImageRe = cvCreateImage(cvGetSize(src),IPL_DEPTH_64F,1);
    ImageIm = cvCreateImage(cvGetSize(src),IPL_DEPTH_64F,1);
    Image = cvCreateImage(cvGetSize(src),src->depth,src->nChannels);
    ImageDst = cvCreateImage(cvGetSize(src),src->depth,src->nChannels);
    fft2(src,Fourier);                  //傅里叶变换
    fft2shift(Fourier, Image);          //中心化
    cvDFT(Fourier,dst,CV_DXT_INV_SCALE);//实现傅里叶逆变换,并对结果进行缩放
    cvSplit(dst,ImageRe,ImageIm,0,0);
    
    cvNamedWindow("源图像",0);
    cvShowImage("源图像",src);             
    //对数组每个元素平方并存储在第二个参数中
    cvPow(ImageRe,ImageRe,2);              
    cvPow(ImageIm,ImageIm,2);
    cvAdd(ImageRe,ImageIm,ImageRe,NULL);
    cvPow(ImageRe,ImageRe,0.5);
    cvMinMaxLoc(ImageRe,&m,&M,NULL,NULL);
    scale = 255/(M - m);
    shift = -m * scale;
    //将shift加在ImageRe各元素按比例缩放的结果上,存储为ImageDst
    cvConvertScale(ImageRe,ImageDst,scale,shift);
    
    cvNamedWindow("傅里叶谱",0);
    cvShowImage("傅里叶谱",Image);
    cvNamedWindow("傅里叶逆变换",0);
    cvShowImage("傅里叶逆变换",ImageDst);
    //释放图像
    cvWaitKey(10000);
    cvReleaseImage(&src);
    cvReleaseImage(&Image);
    cvReleaseImage(&ImageIm);
    cvReleaseImage(&ImageRe);
    cvReleaseImage(&Fourier);
    cvReleaseImage(&dst);
    cvReleaseImage(&ImageDst);
    return 0;
    }

    转载:http://blog.csdn.net/abcjennifer/article/details/7359952

  • 相关阅读:
    求职方法论
    测试经验与教训_学习笔记
    测试架构师修炼之道_学习笔记
    Jmeter测试oracle
    Jmeter 非UI界面jmx脚本不能正常退出
    Jmeter参数化的理解
    jmeter 测试并发
    Jmeter测试数据库
    pytorch runtime error: CUDNN_STATUS_MAPPING_ERROR
    Python/pytorch 切换国内源/AttributeError: module 'torch.jit' has no attribute 'unused'/not a trusted or secure host
  • 原文地址:https://www.cnblogs.com/lllini/p/11955319.html
Copyright © 2011-2022 走看看