zoukankan      html  css  js  c++  java
  • [线段树]Skyscraper

    题目描述

    At the main street of Byteland, there will be built n skyscrapers, standing sequentially one next to other. If look leftside right, sequence of their height will be a1,a2,…,an.

    Initially the street is empty, every skyscraper's height is 0. Hamster is the leader of the construction team. In each stage, Hamster can select a range [l,r], then the team will work on this range. Specifically, assume the height sequence is h1,h2,…,hn, then hl,hl+1,…,hr will increase by 1 during this stage. When hi=ai holds for all i∈[1,n], the project will be closed.

    The plan may be changed for many times. There will be m events of 2 kinds below:

    ·1 l r k (1≤l≤r≤n,1≤k≤105), for all x∈[l,r], change ax to ax+k.
    ·2 l r (1≤l≤r≤n), assume a1,a2,…,al−1,ar+1,ar+2,…,an=0, ask for the minimum number of required stages to close the project.

    输入

    The first line of the input contains an integer T(1≤T≤1000), denoting the number of test cases.

    In each test case, there are two integers n,m(1≤n,m≤100000) in the first line, denoting the number of skyscrapers and events.

    In the second line, there are n integers a1,a2,...,an(1≤ai≤100000).

    For the next m lines, each line describes an event.

    It is guaranteed that ∑n≤106 and ∑m≤106.

    输出

    For each query event, print a single line containing an integer, denoting the answer.

    样例输入 Copy

    1
    5 4
    1 3 1 4 5
    2 1 5
    1 3 4 2
    2 2 4
    2 1 5
    

    样例输出 Copy

    7
    6
    6
    题意:对于序列a[1~n],有m个操作。1 l r k表示对[l,r]区间的数都加上k;2 l r表示询问使[l,r]区间完工的最小阶段数(一个阶段可以选择对一个子区间同时加1,当i点的值等于a[i]时,这点即完工)
    思路:使[l,r]区间完工的最小阶段数,就是∑max{a[i]-a[i-1],0}。即当a[i]>a[i-1]时,对答案贡献a[i]-a[i-1],否则对答案贡献0。
    所以我们要维护a[1~n]的差分序列d[1~n];对每一个询问[l,r],求a[l]+sum{max(d[l+1~r],0)}(a[l]=sum{d[1~l]})。线段树维护即可。
    AC代码:
    #include<bits/stdc++.h>
    typedef long long ll;
    using namespace std;
    
    ll n,m;
    ll a[100005],d[100005];
    
    ll val[100005*4],sum[100005*4];
    
    void update(ll k){
      val[k]=val[k<<1]+val[k<<1|1];
      sum[k]=sum[k<<1]+sum[k<<1|1];
    }
    void build(ll k,ll l,ll r){
      if(l==r){
        val[k]=d[l];
        sum[k]=val[k]>0?val[k]:0;
        return;
      }
      ll mid=(l+r)>>1;
      build(k<<1,l,mid);
      build(k<<1|1,mid+1,r);
      update(k);
    }
    void modify(ll k,ll l,ll r,ll pos,ll v){
      if(l==r){
        val[k]+=v;
        sum[k]=val[k]>0?val[k]:0;
        return;
      }
      ll mid=(l+r)>>1;
      if(pos<=mid) modify(k<<1,l,mid,pos,v);
      else modify(k<<1|1,mid+1,r,pos,v);
      update(k);
    }
    ll query1(ll k,ll l,ll r,ll L,ll R){
      if(L>R) return 0;
      if(L<=l&&r<=R){
        return val[k];
      }
      ll ret=0;
      ll mid=(l+r)>>1;
      if(L<=mid) ret+=query1(k<<1,l,mid,L,R);
      if(R>mid) ret+=query1(k<<1|1,mid+1,r,L,R);
      return ret;
    }
    ll query2(ll k,ll l,ll r,ll L,ll R){
      if(L>R) return 0;
      if(L<=l&&r<=R){
        return sum[k];
      }
      ll ret=0;
      ll mid=(l+r)>>1;
      if(L<=mid) ret+=query2(k<<1,l,mid,L,R);
      if(R>mid) ret+=query2(k<<1|1,mid+1,r,L,R);
      return ret;
    }
    
    int main()
    {
        ll _;scanf("%lld",&_);
        while(_--){
            scanf("%lld%lld",&n,&m);
            for(ll i=1;i<=n;i++){
                scanf("%lld",&a[i]);
                d[i]=a[i]-a[i-1];
            }
            build(1,1,n);
            while(m--){
                ll op;scanf("%lld",&op);
                if(op==1){
                    ll l,r,k;scanf("%lld%lld%lld",&l,&r,&k);
                    modify(1,1,n,l,k);
                    if(r+1<=n) modify(1,1,n,r+1,-k);
                }
                else{
    
                    ll l,r;scanf("%lld%lld",&l,&r);
                    ll ans=query1(1,1,n,1,l)+query2(1,1,n,l+1,r);
                    printf("%lld
    ",ans);
                }
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    opencv学习笔记7 重映射和仿射变换
    opencv学习笔记8 高斯金字塔,拉普拉斯金字塔,调整大小
    opencv学习笔记6 角点检测
    opencv学习笔记5 霍夫变换 漫水填充
    opencv学习笔记4 边缘检测
    opencv学习笔记3 滤波 形态学
    opencv学习笔记2 拖动条,亮度对比度 颜色空间缩减 鼠标事件
    opencv学习笔记1 加载图像 图像融合 分通道与合并
    URL编码表
    BUUCTF-[GWCTF 2019]我有一个数据库 1
  • 原文地址:https://www.cnblogs.com/lllxq/p/11749527.html
Copyright © 2011-2022 走看看