zoukankan      html  css  js  c++  java
  • hdu 6351

    HDU 6315 Naive Operations(线段树区间整除区间)

    Problem Description
    In a galaxy far, far away, there are two integer sequence a and b of length n.
    b is a static permutation of 1 to n. Initially a is filled with zeroes.
    There are two kind of operations:

    1. add l r: add one for al,al+1...ar
    2. query l r: query ∑ri=l⌊ai/bi⌋

    Input
    There are multiple test cases, please read till the end of input file.
    For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.
    In the second line, n integers separated by spaces, representing permutation b.
    In the following q lines, each line is either in the form 'add l r' or 'query l r', representing an operation.
    1≤n,q≤100000, 1≤l≤r≤n, there're no more than 5 test cases.

    Output
    Output the answer for each 'query', each one line.

    Sample Input
    5 12
    1 5 2 4 3
    add 1 4
    query 1 4
    add 2 5
    query 2 5
    add 3 5
    query 1 5
    add 2 4
    query 1 4
    add 2 5
    query 2 5
    add 2 2
    query 1 5

    Sample Output
    1
    1
    2
    4
    4
    6

    题意

    初始a数组为0,给你一个全排列的b数组,q次询问add x y为a数组区间x y增加1,query x y查询a数组整除b数组对应下标的和

    题解

    区间操作很容易想到线段树

    初始每个叶子节点赋值为b[i],维护一个区间最小值min,和区间和sum

    对于每个add,区间[X,Y]最小值减1,如果当前区间最小值=1,就继续往下更新,如果更新到叶子节点并且min=1,sum+1

    对于每个query,查询区间[X,Y]sum,如果区间min=0,再去暴力更新区间(可以知道一共q次询问,q/1+q/2+q/3+....q/n为调和级数,复杂度O(logn))

    总复杂度O(nlog^2 n)

    代码

    include

    include

    include

    using namespace std;

    const int maxn=(100000+10)*4;

    define Min(a,b) ((a)<(b)?(a):(b))

    int b[maxn],add[maxn],minn[maxn],sum[maxn],n;

    void pushup(int rt){
    minn[rt]=Min(minn[rt<<1],minn[rt<<1|1]);
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
    }

    void build(int l,int r,int rt){
    sum[rt]=0,add[rt]=0;
    if(l==r){
    minn[rt]=b[l];
    return ;
    }
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
    pushup(rt);
    }

    void pushdown(int rt){
    if(add[rt]){
    add[rt<<1|1]+=add[rt];
    add[rt<<1]+=add[rt];
    minn[rt<<1|1]-=add[rt];
    minn[rt<<1]-=add[rt];
    add[rt]=0;
    }
    }

    void change(int l,int r,int rt,int L,int R){
    if(l>=L && r<=R && minn[rt]>1){
    add[rt]++;
    minn[rt]--;
    return ;
    }
    int mid=(l+r)>>1;
    if(lr && minn[rt]1){
    minn[rt]=b[l];
    add[rt]=0;
    sum[rt]++;
    return ;
    }
    pushdown(rt);
    if(L<=mid) change(l,mid,rt<<1,L,R);
    if(R>mid) change(mid+1,r,rt<<1|1,L,R);
    pushup(rt);
    }

    int ask(int l,int r,int rt,int L,int R){
    if(l>=L && r<=R){
    return sum[rt];
    }
    int mid=(l+r)>>1;
    pushdown(rt);
    int ans=0;
    if(L<=mid) ans+=ask(l,mid,rt<<1,L,R);
    if(R>mid) ans+=ask(mid+1,r,rt<<1|1,L,R);
    pushup(rt);
    return ans;
    }

    int main(){
    int q,l,r;
    while(scanf("%d%d",&n,&q)!=EOF){
    for (int i=1;i<=n;i++) scanf("%d",&b[i]);
    build(1,n,1);
    while(q--){
    char c[10];
    scanf("%s",c);
    if(c[0]=='a') {scanf("%d%d",&l,&r);change(1,n,1,l,r);}
    else {scanf("%d%d",&l,&r);printf("%d ",ask(1,n,1,l,r));}
    }
    }
    return 0;
    }

  • 相关阅读:
    21 jsp——jsp中的相对路径和绝对路径
    20 jsp——jsp的九大内置对象
    19 jsp——jsp的转发标签
    18 jsp——静态引入和动态引入
    17 jsp——全局代码,局部代码
    【zabbix告警监控】配置zabbix监控nginx服务
    【nagios监控】基于linux搭建nagios监控
    【zabbix监控问题】记录zabbix控制面板报错及日志报错的解决方法
    【docker构建】基于docker构建rabbitmq消息队列管理服务
    【docker构建】基于docker搭建redis数据库缓存服务
  • 原文地址:https://www.cnblogs.com/lmjer/p/10375111.html
Copyright © 2011-2022 走看看