zoukankan      html  css  js  c++  java
  • OpenCV学习(7)--

    阈值操作:

     1 class ThresholdDemoExamlpe {
     2     // 阈值操作
     3 public:
     4     //static int thresholdValue = 0;
     5     //static int thresholdType = 3;
     6     //static int const maxValue = 255;
     7     static int thresholdValue;
     8     static int thresholdType;
     9     static int const maxValue;
    10     static int const maxType = 4;
    11     static int const maxBINARYvalue = 255;
    12     static cv::Mat src; 
    13     static cv::Mat src_gray;
    14     static cv::Mat dst;
    15 
    16     static void ThresholdDemo(int, void*) {
    17         // 0: Binary
    18         // 1: Binary Inverted
    19         // 2: Threshold Truncated
    20         // 3: Threshold to Zero
    21         // 4: Threshold to Zero Inverted
    22         // 图像二值化
    23         // https://blog.csdn.net/u012566751/article/details/77046445
    24         cv::threshold(src_gray, dst, thresholdValue, maxBINARYvalue, thresholdType);
    25         cv::imshow("Threshold Demo", dst);
    26     }
    27 
    28     int show(void) {    
    29         src = cv::imread("dog.jpg", cv::IMREAD_COLOR);
    30         if (src.empty())
    31             return -1;
    32 
    33         cv::cvtColor(src, src_gray, cv::COLOR_BGR2GRAY);  // 转化为灰度图像
    34         cv::namedWindow("Threshold Demo", cv::WINDOW_AUTOSIZE);
    35         cv::createTrackbar("Type: 
     0: Binary 
     1: Binary Inverted 
     2: Truncate 
     3: To Zero 
     4: To Zero Inverted", "Threshold Demo", &thresholdType, maxType, ThresholdDemo);
    36         cv::createTrackbar("Value", "Threshold Demo", &thresholdValue, maxValue, ThresholdDemo);
    37         ThresholdDemo(0, 0);
    38 
    39         cv::waitKey(0);
    40         return 0;
    41     }
    42 
    43 };

    Object detection:

     1 class ObjectDetection {
     2 public:
     3     static int low_r;
     4     static int low_g;
     5     static int low_b;
     6     static int high_r;
     7     static int high_g;
     8     static int high_b;
     9 
    10     static void on_low_r_thresh_trackbar(int, void*) {
    11         low_r = min(high_r - 1, low_r);
    12         // openCV提供createTrackbar指定图像窗口创建一个指定名称和范围的滑动条,使用户能够滑动调整输入,然后根据输入值执行程序。
    13         // 还提供了getTrackbarPos和setTrackbarPos以获取和修改bar的当前值。
    14         // https://blog.csdn.net/u010963435/article/details/78682725
    15         cv::setTrackbarPos("Low R", "Object Detection", low_r);
    16     }
    17 
    18     static void on_high_r_thresh_trackbar(int, void*) {
    19         high_r = min(high_r, low_r + 1);
    20         cv::setTrackbarPos("High R", "Object Detection", high_r);
    21     }
    22 
    23     static void on_low_g_thresh_trackbar(int, void*) {
    24         low_g = min(high_g - 1, low_g);
    25         cv::setTrackbarPos("Low G", "Object Detection", low_g);
    26     }
    27 
    28     static void on_high_g_thresh_trackbar(int, void*) {
    29         high_g = min(high_g, low_g + 1);
    30         cv::setTrackbarPos("High G", "Object Detection", high_g);
    31     }
    32 
    33     static void on_low_b_thresh_trackbar(int, void*) {
    34         low_b = min(high_b - 1, low_b);
    35         cv::setTrackbarPos("Low B", "Object Detection", low_b);
    36     }
    37 
    38     static void on_high_b_thresh_trackbar(int, void*) {
    39         high_b = min(high_b, low_b + 1);
    40         cv::setTrackbarPos("High B", "Object Detection", high_b);
    41     }
    42 
    43     static int show() {
    44         cv::Mat frame, frame_threshold;
    45         //cv::VideoCapture cap(0);  // //视频捕捉设备 id ---笔记本电脑的用0表示
    46         frame = cv::imread("angel.jpg", cv::IMREAD_COLOR);
    47         cv::namedWindow("Video Capture", cv::WINDOW_NORMAL);
    48         cv::namedWindow("Object Detection", cv::WINDOW_NORMAL);
    49 
    50         // 创建滑动条 设定阈值
    51         cv::createTrackbar("Low R", "Object Detection", &low_r, 255, on_low_r_thresh_trackbar);
    52         cv::createTrackbar("HIgh R", "Object Detection", &high_r, 255, on_high_r_thresh_trackbar);
    53         cv::createTrackbar("Low G", "Object Detection", &low_g, 255, on_low_g_thresh_trackbar);
    54         cv::createTrackbar("HIgh G", "Object Detection", &high_g, 255, on_high_g_thresh_trackbar);
    55         cv::createTrackbar("Low B", "Object Detection", &low_b, 255, on_low_b_thresh_trackbar);
    56         cv::createTrackbar("HIgh B", "Object Detection", &high_b, 255, on_high_b_thresh_trackbar);
    57 
    58         //while (true) {
    59             //cap >> frame;
    60             //if (frame.empty())
    61                 //break;
    62 
    63             //cv::inRange(frame, cv::Scalar(low_b, low_g, low_r), cv::Scalar(high_b, high_g, high_r), frame_threshold);
    64             //cv::imshow("Video Capture", frame);
    65             //cv::imshow("Object Detection", frame_threshold);
    66         //}
    67         cv::inRange(frame, cv::Scalar(low_b, low_g, low_r), cv::Scalar(high_b, high_g, high_r), frame_threshold);
    68         cv::imshow("Video Capture", frame);
    69         cv::imshow("Object Detection", frame_threshold);
    70 
    71         return 0;
    72     }
    73 };
    74 /*
    75 int ObjectDetection::low_b = 30;
    76 int ObjectDetection::low_g = 30;
    77 int ObjectDetection::low_r = 30;
    78 int ObjectDetection::high_b = 100;
    79 int ObjectDetection::high_g = 100;
    80 int ObjectDetection::high_r = 100;
    81 */

    使用cv::filter2D创建线性过滤器:

     1 int createFilterExample(void) {
     2     // 使用cv::filter2D创建线性过滤器
     3     cv::Mat src, dst, kernel;
     4     cv::Point anchor = cv::Point(-1, -1);   // 中心点;
     5     double delta = 0;
     6     int ddepth = -1;
     7     int kernelSize;
     8     int ind = 0;
     9 
    10     src = cv::imread("small.jpg", cv::IMREAD_COLOR);
    11     if (src.empty())
    12         return -1;
    13 
    14     cv::imshow("Src", src);
    15 
    16     kernelSize = 3;
    17     kernel = cv::Mat::ones(kernelSize, kernelSize, CV_32F);
    18     cv::filter2D(src, dst, ddepth, kernel, anchor, delta, cv::BORDER_DEFAULT);
    19     cv::imshow("kernel size 3", dst);
    20     /*
    21         kernelSize = 5;
    22         kernel = cv::Mat::ones(kernelSize, kernelSize, CV_32F);
    23         cv::filter2D(src, dst, ddepth, kernel, anchor, delta, cv::BORDER_DEFAULT);
    24         cv::imshow("kernel size 5", dst);
    25 
    26         kernelSize = 7;
    27         kernel = cv::Mat::ones(kernelSize, kernelSize, CV_32F);
    28         cv::filter2D(src, dst, ddepth, kernel, anchor, delta, cv::BORDER_DEFAULT);
    29         cv::imshow("kernel size 7", dst);
    30 
    31         kernelSize = 9;
    32         kernel = cv::Mat::ones(kernelSize, kernelSize, CV_32F);
    33         cv::filter2D(src, dst, ddepth, kernel, anchor, delta, cv::BORDER_DEFAULT);
    34         cv::imshow("kernel size 9", dst);
    35 
    36         kernelSize = 11;
    37         kernel = cv::Mat::ones(kernelSize, kernelSize, CV_32F);
    38         cv::filter2D(src, dst, ddepth, kernel, anchor, delta, cv::BORDER_DEFAULT);
    39         cv::imshow("kernel size 11", dst);
    40     */
    41 
    42     cv::waitKey(0);
    43     return 0;
    44 }

    扩充图像边缘:

     1 int makeBorder(void) {
     2     // 扩充图像边缘
     3     cv::Mat src, dst;
     4     src = cv::imread("Lisa.png", cv::IMREAD_COLOR);
     5     if (src.empty())
     6         return -1;
     7 
     8     cv::namedWindow("Make Border", cv::WINDOW_AUTOSIZE);
     9     int top = (int)(0.05 * src.rows);
    10     int bottom = (int)(0.05 * src.rows);
    11     int left = (int)(0.05 * src.cols);
    12     int right = (int)(0.05 * src.cols);
    13     dst = src;
    14     cv::imshow("Make Border", dst);
    15     cv::RNG rng(12345);
    16     cv::Scalar value(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
    17     // 扩充图像边缘
    18     // https://blog.csdn.net/qq_22764813/article/details/52787553
    19     //cv::copyMakeBorder(src, dst, top, bottom, left, right, cv::BORDER_CONSTANT, value);
    20     cv::copyMakeBorder(src, dst, top, bottom, left, right, cv::BORDER_REPLICATE, value);
    21     cv::imshow("Make Border", dst);
    22 
    23     cv::waitKey(0);
    24     return 0;
    25 }

    sobel算子的使用:

     1 int sobelExample(void) {
     2     cv::Mat image, src, src_gray, grad;
     3     int ddepth = CV_16S;
     4 
     5     image = cv::imread("Lisa.png", cv::IMREAD_COLOR);
     6     if (image.empty())
     7         return -1;
     8 
     9     // 高斯滤波 减少图像中的噪音
    10     cv::GaussianBlur(image, src, cv::Size(3, 3), 0, 0, cv::BORDER_DEFAULT);
    11     // 转换为灰度图片
    12     cv::cvtColor(src, src_gray, cv::COLOR_BGR2GRAY);
    13     cv::Mat grad_x, grad_y, abs_grad_x, abs_grad_y;
    14     // Gradient X
    15     // sobel算子是一种常用的边缘检测算子,是一阶的梯度算法。
    16     // https://blog.csdn.net/streamchuanxi/article/details/51542141
    17     cv::Sobel(src_gray, grad_x, ddepth, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT);
    18     // Gradient Y
    19     cv::Sobel(src_gray, grad_y, ddepth, 0, 1, 3, 1, 0, cv::BORDER_DEFAULT);
    20 
    21     cv::convertScaleAbs(grad_x, abs_grad_x);
    22     cv::convertScaleAbs(grad_y, abs_grad_y);
    23 
    24     cv::addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
    25 
    26     cv::imshow("Sobel Demo", grad);
    27 
    28 
    29     cv::waitKey(0);
    30     return 0;
    31 }

    拉普拉斯变换示例:

     1 int LaplaceOperatorExample(void) {
     2     // 拉普拉斯变换
     3     cv::Mat src, src_gray, dst;
     4     int kernel_size = 3;
     5     int scale = 1;
     6     int delta = 0;
     7     int ddepth = CV_16S;
     8     string window_name = "Laplace Demo";
     9     src = cv::imread("Lisa.png", cv::IMREAD_COLOR);
    10     if (src.empty())
    11         return -1;
    12 
    13     cv::GaussianBlur(src, src, cv::Size(3, 3), 0, 0, cv::BORDER_DEFAULT);
    14     cv::cvtColor(src, src_gray, cv::COLOR_BGR2GRAY);
    15     cv::Mat abs_dst;
    16     // 拉普拉斯变换
    17     cv::Laplacian(src_gray, dst, ddepth, kernel_size, scale, delta, cv::BORDER_DEFAULT);
    18     cv::convertScaleAbs(dst, abs_dst);
    19     cv::imshow(window_name, abs_dst);
    20 
    21     cv::waitKey(0);
    22     return 0;
    23 }

    Canny边缘检测器使用:

     1 int showCanny(void) {
     2     // Canny边缘检测器
     3     cv::Mat src, src_gray, dst, detected_edges;
     4     int lowThreshold = 25;
     5     int ratio = 3;
     6     int kernel_size = 3;
     7     src = cv::imread("small.jpg", cv::IMREAD_COLOR);
     8     if (src.empty())
     9         return -1;
    10 
    11     dst.create(src.size(), src.type());
    12     cv::cvtColor(src, src_gray, cv::COLOR_BGR2GRAY);
    13     cv::namedWindow("Edge Map", cv::WINDOW_AUTOSIZE);
    14     cv::blur(src_gray, detected_edges, cv::Size(3, 3));
    15     // https://blog.csdn.net/u013488563/article/details/18889557
    16     cv::Canny(detected_edges, detected_edges, lowThreshold, lowThreshold * ratio, kernel_size);
    17     dst = cv::Scalar::all(0);
    18     src.copyTo(dst, detected_edges);
    19     cv::imshow("Edge Map", dst);
    20 
    21 
    22     cv::waitKey(0);
    23     return 0;
    24 }

    检测直线和圆:

     1 int HoughLineExample(void) {   // 运行有点问题
     2     // Hough Line变换 用于检测直线
     3     cv::Mat src = cv::imread("LineCircle.jpg", cv::IMREAD_COLOR);
     4     if (src.empty())
     5         return -1;
     6 
     7     cv::imshow("Src", src);
     8     cv::Mat dst, cdst;
     9     cv::cvtColor(src, dst, cv::COLOR_BGR2GRAY);
    10     cv::imshow("Gray", dst);
    11     cv::Canny(dst, cdst, 50, 200, 3);
    12     cv::imshow("Canny src", cdst);
    13     //cv::cvtColor(dst, cdst, cv::COLOR_GRAY2BGR);
    14     //cv::imshow("BGR", cdst);
    15 
    16     vector<cv::Vec2f> lines;
    17     cv::HoughLines(cdst, lines, 1, CV_PI / 180, 100, 0, 0);
    18     for (int i = 0; i < lines.size(); i++) {
    19         float rho = lines[i][0], theta = lines[i][1];
    20         cv::Point pt1, pt2;
    21         double a = cos(theta), b = sin(theta);
    22         double x0 = a * rho, y0 = b * rho;
    23         pt1.x = cvRound(x0 + 1000 * (-b));
    24         pt1.y = cvRound(y0 + 1000 * (a));
    25         pt2.x = cvRound(x0 - 1000 * (-b));
    26         pt2.y = cvRound(y0 - 1000 * (a));
    27         cv::line(cdst, pt1, pt2, cv::Scalar(255, 0, 0), 3, 8);
    28     }
    29     cv::imshow("detected lines", cdst);
    30 
    31     cv::waitKey(0);
    32     return 0;
    33 }
    34 
    35 
    36 
    37 int DetectCircle(void) {
    38     // Hough Circle 检测图像中的圆
    39     //cv::Mat image = cv::imread("bowl.jpg", cv::IMREAD_COLOR);
    40     cv::Mat image = cv::imread("LineCircle.jpg", cv::IMREAD_COLOR);
    41     if (image.empty())
    42         return -1;
    43     cv::imshow("Src", image);
    44 
    45     cv::Mat res;
    46     res.create(image.size(), image.type());
    47     cv::Mat gray;
    48     cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
    49     cv::imshow("Gray", gray);
    50     // 中值滤波
    51     cv::medianBlur(gray, gray, 5);
    52     vector<cv::Vec3f> circles;
    53     // http://www.manongjc.com/article/42132.html
    54     cv::HoughCircles(gray, circles, cv::HOUGH_GRADIENT, 1, gray.rows / 16, 100, 30, 50, 300);
    55     // 单独一个圆可以检测出来 当圆和其他直线相交 就测出来多个圆
    56 
    57 
    58     for (int i = 0; i < circles.size(); i++) {
    59         cv::Vec3i c = circles[i];
    60         cv::circle(res, cv::Point(c[0], c[1]), c[2], cv::Scalar(0, 0, 255), 3, cv::LINE_AA);
    61         cv::circle(res, cv::Point(c[0], c[1]), 2, cv::Scalar(0, 255, 0), 3, cv::LINE_AA);
    62     }
    63 
    64     cv::imshow("Detected Circles", res);
    65 
    66     cv::waitKey(0);
    67     return 0;
    68 }

    简单重映射:

     1 int RemapExample(void) {
     2     // 简单重映射
     3     cv::Mat src = cv::imread("dog.jpg", cv::IMREAD_COLOR);
     4     cv::Mat dst;
     5     dst.create(src.size(), src.type());
     6     cv::Mat map_x, map_y;
     7     map_x.create(src.size(), CV_32FC1);
     8     map_y.create(src.size(), CV_32FC1);
     9     cv::namedWindow("Remap demo", cv::WINDOW_AUTOSIZE);
    10 
    11     for (int j = 0; j < src.rows; j++) {
    12         for (int i = 0; i < src.cols; i++) {
    13             // 上下翻转
    14             //map_x.at<float>(j, i) = (float)i;
    15             //map_y.at<float>(j, i) = (float)(src.rows - j);
    16 
    17             // 左右翻转
    18             //map_x.at<float>(j, i) = (float)(src.cols - i);
    19             //map_y.at<float>(j, i) = (float)j;
    20 
    21             // 上下左右都翻转
    22             //map_x.at<float>(j, i) = (float)(src.cols - i);
    23             //map_y.at<float>(j, i) = (float)(src.rows - j);
    24 
    25             // 缩小 
    26             if (i > src.cols * 0.25 && i < src.cols * 0.75 && j > src.rows * 0.25 && j < src.rows * 0.75) {
    27                 map_x.at<float>(j, i) = 2 * (i - src.cols * 0.25f) + 0.5f;
    28                 map_y.at<float>(j, i) = 2 * (j - src.rows * 0.25f) + 0.5f;
    29             }
    30             else {
    31                 map_x.at<float>(j, i) = 0;
    32                 map_y.at<float>(j, i) = 0;
    33             }
    34         }
    35     }
    36 
    37     // https://blog.csdn.net/sss_369/article/details/52983123
    38     // cv::remap()就是对原图像各个像素点改变位置 
    39     cv::remap(src, dst, map_x, map_y, cv::INTER_LINEAR, cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
    40     cv::imshow("Remap demo", dst);
    41 
    42 
    43     cv::waitKey(0);
    44     return 0;
    45 }
  • 相关阅读:
    【前端_js】前端跨网络异步获取资源——fetch()
    【前端_React】React小书
    【前端_js】JQuery DataTables插件的使用
    【前端_js】解决ajax跨域请求数据
    event.srcElement在火狐(FireFox)下的兼容问题。搜索框获得焦点时默认文字变化
    ASP.NET MVC 上传大文件时404
    使用Zen coding高效编写html代码
    CSS 去除列表项li前面的小圆点
    谈谈CSS的布局,display、position、float
    JS引用类型之——RegExp
  • 原文地址:https://www.cnblogs.com/lnlin/p/13790362.html
Copyright © 2011-2022 走看看