zoukankan      html  css  js  c++  java
  • 多层感知机与简易CNN的PyTorch实现

    相关内容:

    多层感知机与简易CNN的TensorFlow实现

    可以在GitHub上查看更详细的内容

    具体实现:

    导入相关包和数据集:

    # 导入相关包
    import torch
    import torchvision
    import torch.nn as nn
    import torchvision.transforms as transforms
    
    batch_size = 256
    # MNIST 数据集导入
    train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
    test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())# 不需要再下载
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

    多层感知机:

    # 多层感知机模型
    class Model_1(nn.Module):
        def __init__(self, input_size, hidden_size, output_size):
            super(Model_1, self).__init__()
            self.l1 = nn.Linear(input_size, hidden_size)
            self.relu = nn.ReLU()
            self.l2 = nn.Linear(hidden_size, output_size)
            
        def forward(self, x):
            y = self.l1(x)
            y = self.relu(y)
            y = self.l2(y)
            return y

    超参数的选取与TensorFlow实现保持一致:

    # 超参数
    input_size = 784#28*28
    num_epochs = 5
    num_hiddens = 256
    output_size = 10
    learning_rate = 0.5
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# cuda
    
    model = Model_1(input_size, num_hiddens, output_size).to(device)
    #model = nn.Sequential(nn.Flatten(), nn.Linear(input_size, num_hiddens), nn.ReLU(), nn.Linear(num_hiddens, num_classes))
    
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化器
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    训练代码:

    # train
    n_total_steps = len(train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            # reshape 相当于Flatten()
            images = images.reshape(-1, input_size).to(device)
            labels = labels.to(device)
            
            # forward
            outputs = model(images)
            loss = criterion(outputs, labels)
            
            # backward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            if (i + 1) % 100 == 0:
                print(f'epoch {epoch+1} / {num_epochs}, step {i+1}/{n_total_steps}, loss = {loss.item():.4f}')

    训练输出:

    epoch 1 / 5, step 100/235, loss = 0.2301
    epoch 1 / 5, step 200/235, loss = 0.2396
    epoch 2 / 5, step 100/235, loss = 0.1522
    epoch 2 / 5, step 200/235, loss = 0.1654
    epoch 3 / 5, step 100/235, loss = 0.1569
    epoch 3 / 5, step 200/235, loss = 0.1311
    epoch 4 / 5, step 100/235, loss = 0.0831
    epoch 4 / 5, step 200/235, loss = 0.0854
    epoch 5 / 5, step 100/235, loss = 0.0426
    epoch 5 / 5, step 200/235, loss = 0.0717

    测试代码:

    # test
    with torch.no_grad():
        n_correct = 0
        n_samples = 0
        for images, labels in test_loader:
            images = images.reshape(-1, input_size).to(device)
            labels = labels.to(device)
            outputs = model(images)
            
            _, pred = torch.max(outputs, 1)
            n_samples += images.shape[0]
            n_correct += (pred == labels).sum().item()
        acc = 100.0 * n_correct / n_samples
        print(f'Accuracy = {acc}')
    # 测试结果:Accuracy = 97.19

    简易CNN实现:

    # 简易CNN
    import torch.nn.functional as F
    class CNNModel(nn.Module):
        def __init__(self):
            super(CNNModel, self).__init__()
            # 输入数据形状变化:n*28*28->n*24*24->n*12*12
            self.conv = nn.Conv2d(1, 6, 5)# 输入数据的通道数 输出数据的通道数 卷积核大小
            self.pool = nn.MaxPool2d(2, 2)
            self.f1 = nn.Linear(6*12*12, 256)
            self.f2 = nn.Linear(256, 10)
            
        def forward(self, x):
            y = self.pool(F.relu(self.conv(x)))
            y = y.view(-1, 6*12*12)
            y = F.relu(self.f1(y))
            y = self.f2(y)
            return y

    超参数:

    num_epochs = 5
    learning_rate = 0.001
    
    model = CNNModel().to(device)
    
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    训练和测试代码与上文几乎一致,这里只给出训练和测试的结果:

    epoch 1 / 5, step 100/235, loss = 0.2931
    epoch 1 / 5, step 200/235, loss = 0.1786
    epoch 2 / 5, step 100/235, loss = 0.1415
    epoch 2 / 5, step 200/235, loss = 0.0902
    epoch 3 / 5, step 100/235, loss = 0.0830
    epoch 3 / 5, step 200/235, loss = 0.1001
    epoch 4 / 5, step 100/235, loss = 0.0452
    epoch 4 / 5, step 200/235, loss = 0.0352
    epoch 5 / 5, step 100/235, loss = 0.0272
    epoch 5 / 5, step 200/235, loss = 0.0731
    
    准确率:Accuracy = 98.28
  • 相关阅读:
    主流软件系统类别
    vue 生命周期
    redis 实现多属性查询
    业务逻辑层缓存设计
    ORM 缓存
    keepalived+nginx实现niginx高可用,宕机自动重启
    cookie sessionstorge localstorge 的比较
    css 定位
    2019年1月2日 生产者消费者模型 元旦快乐
    2018年12月25日 圣诞节快乐 生成器plus
  • 原文地址:https://www.cnblogs.com/lnlin/p/14200651.html
Copyright © 2011-2022 走看看