- 线性DP
- 背包DP
xxdp
AcWing276
在动态规划问题需要给出方案时,通常做法是额外使用一些与DP状态大小相同的数组记录下来每个状态的“最优解”是从何处转移而来的。最终用 DP 求出最优解后,通过一次递归,沿着记录的每一步“转移来源”回到初态,即可得到一条从初态到最优解的转移路径,也就是所求的具体方案。
AcWing277 饼干
题目分析
比较巧妙的转化,但是输出方案的时候出了问题,迫使我看了y总的输出方案代码……不知道自己的为啥不行,放坑了
首先一个性质:贪婪度越大的孩子获得的饼干数应该越多。证明也不难证,直接用贪心中的临项交换法就行了,不再赘述。因此我们可以把小朋友按照贪婪值从大到小排序,这样之后他们分配到的饼干数量是单调递减的。
状态设计:设 (f_{i,j}) 表示前 (i) 个小朋友分了 (j) 块饼干所得到的最小怨气值总和。
状态转移:
- 如果第 (i) 个小朋友获得的饼干数不为 (1) 且 (j>=i),那么 (f_{i,j}) 的一个可行选择为 (f_{i,j-i}),这两个式子是等价的,前 (i) 个小朋友分了 (j) 块饼干等价于前 (i) 个小朋友分了 (j-i) 块饼干,原因是这样相当于每个人少拿一块饼干,但是获得的饼干数量的相对顺序是不变的,所以怨气值之和也是不会变的。
- 如果第 (i) 个小朋友获得的饼干数为 (1),那么就可以枚举前面有多少个小朋友获得的饼干数为 (1),从中取最小值,这一步可以用前缀和优化。
由此可得整个DP的转移方程为:
初始条件为 (f_{0,0}=0),最终目标为 (f_{n,m})。
输出方案有点迷……
代码
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#define pii pair <int, int>
using namespace std;
const int A = 33;
const int B = 5011;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar();
int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
pii g[A];
int n, m, f[A][B], sum[A], ans[A];
int main() {
n = read(), m = read();
for (int i = 1; i <= n; i++) {
g[i].first = read();
g[i].second = i;
}
sort(g + 1, g + 1 + n);
reverse(g + 1, g + 1 + n);
for (int i = 1; i <= n; i++)
sum[i] = sum[i - 1] + g[i].first;
memset(f, inf, sizeof(f));
f[0][0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (j >= i) f[i][j] = f[i][j - i];
for (int k = 0; k < i && j >= (i - k); k++)
f[i][j] = min(f[i][j], f[k][j - (i - k)] + k * (sum[i] - sum[k]));
}
}
cout << f[n][m] << '
';
int i = n, j = m, h = 0;
while (i && j) {
if (j >= i && f[i][j] == f[i][j - i]) j -= i, h++;
else {
for (int k = 1; k <= i && k <= j; k++) {
if (f[i][j] == f[i - k][j - k] + (i - k) * (sum[i] - sum[i - k])) {
for (int x = i; x > i - k; x--) ans[g[x].second] = 1 + h;
i -= k, j -= k;
break;
}
}
}
}
for (int i = 1; i <= n; i++) cout << ans[i] << " ";
puts("");
return 0;
}
背包DP
比较简单了,随便写写
0/1背包
有 (n) 件物品和一个容量为 (M) 的背包。第 (i) 件物品的体积是 (V_i),价值是 (W_i)。求解将哪些物品装入背包且容量不超过 (M) 可使价值总和最大。
(f_{i,j})表示前 (i) 件物品恰放入一个容量为 (j) 的背包可以获得的最大价值,转移方程为
初始化 (f_{0,0}=0),目标为 (maxlimits_{i=0}^{m}{f_{n,i}})。
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (j < v[i]) f[i][j] = f[i - 1][j];
else f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
}
}
可以用滚动数组优化空间。
int f[2][maxn_M+1];
int now = 0, last = 1;
for (int i = 1; i <= n; i++) {
swap(now, last);
for (int j = 0; j <= m; j++) {
if (j < v[i]) f[now][j] = f[last][j];
else f[now][j] = max(f[last][j], f[last][j - v[i]] + w[i]);
}
}
其实可以直接压掉第一维,此时第二维需要使用倒序枚举的方法。
我是代码
我是01背包压维的代码
AcWing278 数字组合
01背包板子题。
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int A = 1e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar();
int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int n, m, f[A], a[A];
int main() {
n = read(), m = read();
f[0] = 1;
for (int i = 1; i <= n; i++) a[i] = read();
for (int i = 1; i <= n; i++)
for (int j = m; j >= a[i]; j--) f[j] += f[j - a[i]];
cout << f[m] << "
";
return 0;
}
完全背包
有 (n) 种物品和一个容量为 (M) 的背包。每种物品都有无限个,第 (i) 种物品的体积是 (V_i),价值是 (W_i)。求解将哪些物品装入背包且容量不超过 (M) 可使价值总和最大。
(f_{i,j})表示前 (i) 件物品恰放入一个容量为 (j) 的背包可以获得的最大价值,转移方程为
初始化 (f_{0,0}=0),目标为 (maxlimits_{i=0}^{m}{f_{n,i}})。
同样可以压掉一维,但是正序枚举就可以了,因为一个物品可以选多次。
int f[100010], n, m, v[A], w[A];
for (int i = 1; i <= n; i++)
for (int j = v[i]; j <= m; j++)
f[j] = max(f[j], f[j - v[i]] + w[i]);
int ans = 0;
for (int i = 0; i <= m; i++) ans = max(ans, f[i]);
cout << ans << '
';
AcWing279 自然数拆分
还是板子题……
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;
const int A = 1e5 + 11;
const int B = 1e6 + 11;
const int mod = 2147483648;
inline int read() {
char c = getchar();
int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int n, f[A];
signed main() {
n = read();
f[0] = 1;
for (int i = 1; i < n; i++) {
for (int j = i; j <= n; j++) {
f[j] = (f[j] + f[j - i]) % mod;
}
}
cout << f[n] << '
';
return 0;
}