一眼做法,好处是好想好写坏处是常数大,容易被卡(bzoj loj 洛谷开O2 能AC,不开有90分……
大概就是树剖之后维护线段树,在线段树的每个节点上上维护一个线性基,暴力( 60^2 )的合并儿子
对于每次查询,在树上跳重链,把这些区间的线性基暴力合并上,然后ans在合并之后的线性基上贪心即可。
这样,时间复杂度就是预处理( 60^2nlogn ),查询的话跳链一个log,线段树查询602log,合并线性基602,总的就是( O(602nlog_2n+qlog_2n(602log_2n+60^2)) )
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=100005;
int n,q,h[N],cnt,fa[N],de[N],si[N],hs[N],fr[N],id[N],rl[N],tot;
long long a[N];
struct qwe
{
long long v[65];
void init()
{
memset(v,0,sizeof(v));
}
void add(long long x)
{
for(int i=60;i>=0;i--)
if(x>>i)
{
if(!v[i])
{
v[i]=x;
break;
}
x^=v[i];
}
}
qwe operator + (const qwe &a) const
{
qwe w=a;
for(int i=0;i<=60;i++)
if(v[i])
w.add(v[i]);
return w;
}
};
struct qw
{
int ne,to;
}e[N<<1];
struct xianduanshu
{
int l,r;
qwe v;
}t[N<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void dfs1(int u,int fat)
{
fa[u]=fat;
de[u]=de[fat]+1;
si[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fat)
{
dfs1(e[i].to,u);
si[u]+=si[e[i].to];
if(si[e[i].to]>si[hs[u]])
hs[u]=e[i].to;
}
}
void dfs2(int u,int top)
{
fr[u]=top;
id[u]=++tot;
rl[tot]=u;
if(!hs[u])
return;
dfs2(hs[u],top);
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa[u]&&e[i].to!=hs[u])
dfs2(e[i].to,e[i].to);
}
void build(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r;
if(l==r)
{
t[ro].v.add(a[rl[l]]);
return;
}
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1|1,mid+1,r);
t[ro].v=t[ro<<1].v+t[ro<<1|1].v;
}
qwe ques(int ro,int l,int r)
{
if(t[ro].l==l&&t[ro].r==r)
return t[ro].v;
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
return ques(ro<<1,l,r);
else if(l>mid)
return ques(ro<<1|1,l,r);
else
return ques(ro<<1,l,mid)+ques(ro<<1|1,mid+1,r);
}
void wen(int u,int v)
{
qwe w;
w.init();
while(fr[u]!=fr[v])
{
if(de[fr[u]]<de[fr[v]])
swap(u,v);
w=w+ques(1,id[fr[u]],id[u]);
u=fa[fr[u]];
}
if(de[u]>de[v])
swap(u,v);
w=w+ques(1,id[u],id[v]);
long long ans=0;
for(int i=60;i>=0;i--)
if((ans^w.v[i])>ans)
ans^=w.v[i];
printf("%lld
",ans);
}
int main()
{
n=read(),q=read();
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=1;i<n;i++)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
dfs1(1,0);
dfs2(1,1);
build(1,1,n);
while(q--)
{
int x=read(),y=read();
wen(x,y);
}
return 0;
}