zoukankan      html  css  js  c++  java
  • 2020杭电HDU-6763多校第二场Total Eclipse(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6763
    CSDN食用链接:https://blog.csdn.net/qq_43906000/article/details/107605348

    Problem Description

    There are n cities and m bidirectional roads in Byteland. These cities are labeled by 1,2,…,n, the brightness of the i-th city is bi.

    Magician Sunset wants to play a joke on Byteland by making a total eclipse such that the brightness of every city becomes zero. Sunset can do the following operations for arbitrary number of times:

    · Select an integer k (1≤k≤n).

    · Select k distinct cities (c_1,c_2,…,c_k (1≤c_i≤n)) such that they are connected with each other. In other words, for every pair of distinct selected cities ci and (c_j) (1≤i<j≤k), if you are at city ci, you can reach city (c_j) without visiting cities not in ({c_1,c_2,…,c_k}).

    · For every selected city (c_i) (1≤i≤k), decrease bci by 1.

    Note that Sunset will always choose k with the maximum possible value. Now Sunset is wondering what is the minimum number of operations he needs to do, please write a program to help him.

    Input
    The first line of the input contains a single integer T (1≤T≤10), the number of test cases.

    For each case, the first line of the input contains two integers n and m (1≤n≤100000, 1≤m≤200000), denoting the number of cities and the number of roads.

    The second line of the input contains n integers(b_1,b_2,…,b_n (1≤b_i≤10^9)), denoting the brightness of each city.

    Each of the following m lines contains two integers (u_i) and (v_i(1≤u_i,v_i≤n,u_i≠v_i)), denoting an bidirectional road between the (u_i)-th city and the (v_i)-th city. Note that there may be multiple roads between the same pair of cities.

    Output
    For each test case, output a single line containing an integer, the minimum number of operations.

    Sample Input
    1
    3 2
    3 2 3
    1 2
    2 3

    Sample Output
    4

    题目大意:给你n个节点m条边的图,每个点有一个权值,你现在要做的操作是选择一个连通图,并将其中的每一个点的权值都减一,问你最少需要多少次才能将所有的点都变为0。

    emmm,较为朴素的想法就是对每个连通图的点排序,然后将每个连通图中每个点都减去该连通图中最小的点的权值,然后就会图就会裂开,我们继续操作,直至所有的点都变成了0。
    可以预见的是这种方法维护起来非常复杂,时空复杂度也非常高所以我们要换一种思路。

    我们将小权值(x)往大权值(y)中合并,每一次的合并都会产生(y-x)的贡献,每次合并之后我们将大权值的父节点设置为小权值节点,最后我们再加上每个联通图的最小权值就好了。

    大概思路就差不多是这样的,看代码会更容易理解些

    以下是AC代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int mac=2e5+10;
    
    struct Edge
    {
    	int to,next;
    }eg[mac<<1];
    int head[mac],num=0,father[mac],vis[mac];
    int pa[mac];
    struct Point
    {
    	int pos,val;
    	bool operator <(const Point &a)const{
    		return val>a.val;
    	}
    }pt[mac];
    
    void add(int u,int v)
    {
    	eg[++num]=Edge{v,head[u]};
    	head[u]=num;
    }
    
    int finds(int x){return x==father[x]?x:father[x]=finds(father[x]);}
    
    void init()
    {
    	memset(head,-1,sizeof head);
    	memset(vis,0,sizeof vis);
    	num=0;
    }
    
    int main(int argc, char const *argv[])
    {
    	int t;
    	scanf ("%d",&t);
    	while (t--){
    		init();
    		int n,m;
    		scanf ("%d%d",&n,&m);
    		pa[0]=0;
    		for (int i=1; i<=n; i++){
    			int val;
    			scanf ("%d",&val);
    			pa[i]=val;father[i]=i;
    			pt[i]=Point{i,val};
    		}
    		sort(pt+1,pt+1+n);
    		for (int i=1; i<=m; i++){
    			int u,v;
    			scanf ("%d%d",&u,&v);
    			add(u,v);add(v,u);
    		}
    		long long ans=0;
    		for (int i=1; i<=n; i++){
    			int u=pt[i].pos;
    			vis[u]=1;
    			for (int j=head[u]; j!=-1; j=eg[j].next){
    				int v=eg[j].to;
    				if (!vis[v]) continue;
    				int rt=finds(v);
    				if (rt==u) continue;
    				ans+=pa[rt]-pa[u];
    				father[rt]=u;
    			}
    		}
    		for (int i=1; i<=n; i++)
    			if (father[i]==i) ans+=pa[i];
    		printf("%lld
    ",ans);
    	}
    	return 0;
    }
    
    路漫漫兮
  • 相关阅读:
    js停止(阻止)浏览器继续加载内容
    网页重构中区分IE6、IE7、IE8及标准浏览器的最佳方法
    MySQL学习笔记
    android asmack 注册 登陆 聊天 多人聊天室 文件传输
    解决系统改变字体大小的时候导致的界面布局混乱的问题
    Android UmengShareSDK第三方登录
    Android 设计模式
    Android HTTP session && cookie
    Android之使用HTTP协议的Get/Post方式向服务器提交数据
    Android之Activity的几种跳转方式
  • 原文地址:https://www.cnblogs.com/lonely-wind-/p/13383968.html
Copyright © 2011-2022 走看看