zoukankan      html  css  js  c++  java
  • Codeforces Round #365 (Div. 2) D. Mishka and Interesting sum (树状数组 + 离线查询)

    D. Mishka and Interesting sum

    Little Mishka enjoys programming. Since her birthday has just passed, her friends decided to present her with array of non-negative integers a1, a2, ..., an of n elements!

    Mishka loved the array and she instantly decided to determine its beauty value, but she is too little and can't process large arrays. Right because of that she invited you to visit her and asked you to process m queries.

    Each query is processed in the following way:

    1. Two integers l and r (1 ≤ l ≤ r ≤ n) are specified — bounds of query segment.
    2. Integers, presented in array segment [l,  r] (in sequence of integers al, al + 1, ..., areven number of times, are written down.
    3. XOR-sum of written down integers is calculated, and this value is the answer for a query. Formally, if integers written down in point 2 are x1, x2, ..., xk, then Mishka wants to know the value , where  — operator of exclusive bitwise OR.

    Since only the little bears know the definition of array beauty, all you are to do is to answer each of queries presented.

    Input

    The first line of the input contains single integer n (1 ≤ n ≤ 1 000 000) — the number of elements in the array.

    The second line of the input contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — array elements.

    The third line of the input contains single integer m (1 ≤ m ≤ 1 000 000) — the number of queries.

    Each of the next m lines describes corresponding query by a pair of integers l and r (1 ≤ l ≤ r ≤ n) — the bounds of query segment.

    Output

    Print m non-negative integers — the answers for the queries in the order they appear in the input.

    Examples
    input
    3
    3 7 8
    1
    1 3
    output
    0
    input
    7
    1 2 1 3 3 2 3
    5
    4 7
    4 5
    1 3
    1 7
    1 5
    output
    0
    3
    1
    3
    2
    Note

    In the second sample:

    There is no integers in the segment of the first query, presented even number of times in the segment — the answer is 0.

    In the second query there is only integer 3 is presented even number of times — the answer is 3.

    In the third query only integer 1 is written down — the answer is 1.

    In the fourth query all array elements are considered. Only 1 and 2 are presented there even number of times. The answer is .

    In the fifth query 1 and 3 are written down. The answer is .

    题意是求区间内出现偶数次的数的异或和,根据异或的概念,异或奇数次的数再异或一次这个数就变成0了,异或偶数次的数再异或这个数就变成自身了,所以题目就变成了区间所有数的异或和再异或一次区间中不同的数的异或和(类似hdu3333的离线查询, 不过是加法变成异或),可以用树状数组解决。

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6 + 10;
    int n;
    int a[maxn];
    int Xsum[maxn];
    int c[maxn];
    struct node {
        int l, r, ans, id;
    }p[maxn];
    
    bool cmp1(node a, node b) {
        return a.r < b.r;
    }
    
    bool cmp2(node a, node b) {
        return a.id < b.id;
    } 
    
    inline int lowbit(int x) {
        return x & (-x);
    }
    
    int sum(int x) {
        int ret = 0;
        while(x > 0) {
            ret ^= c[x]; x -= lowbit(x);
        }
        return ret;
    }
    
    void add(int x, int d) {
        while(x <= n) {
            c[x] ^= d; x += lowbit(x);
        }
    }
    
    int main()  {
        Xsum[0] = 0;
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            Xsum[i] = Xsum[i-1] ^ a[i];
        }
        int m;
        scanf("%d", &m);
        for(int i = 1; i <= m; i++) {
            scanf("%d %d", &p[i].l, &p[i].r);
            p[i].id = i;
        }
        memset(c, 0, sizeof(c));
        sort(p + 1, p + 1 + m, cmp1);
        int pos = 1;
        map<int, int> mp;
        for(int i = 1; i <= n; i++) {
            if(mp[a[i]]) {
                add(mp[a[i]], a[i]);
                a[mp[a[i]]] = 0;
            }
            mp[a[i]] = i;
            add(i, a[i]);
            for( ; pos <= m && i == p[pos].r; pos++) {
                p[pos].ans = Xsum[p[pos].r] ^ Xsum[p[pos].l-1] ^ sum(p[pos].r) ^ sum(p[pos].l-1);
            }
        }
        sort(p + 1, p + 1 + m, cmp2);
        for(int i = 1; i <= m; i++) {
            printf("%d
    ", p[i].ans);
        }
    }
  • 相关阅读:
    晨读,难道只是为了完成任务而读的吗?
    集合还有这么优雅的运算法?
    Java中的TreeSet集合会自动将元素升序排序
    CSS3的几个变形案例……
    “老师,请您多关注一下我吧!!!”
    jsp中使用cookie时报错……
    为什么要有周考?周考是用来干什么的?
    今天,我们就来抽个奖!
    今天 ,给大家变个魔术!!!
    Google Maps Api 多坐标分类标记,在地图上显示海量坐标,并分组显示。
  • 原文地址:https://www.cnblogs.com/lonewanderer/p/5767373.html
Copyright © 2011-2022 走看看