zoukankan      html  css  js  c++  java
  • 404 页面不存在

    在初中物理课堂上,我们可能都见过一个蜡烛投影实验:在一个暗箱的前方放着一支点燃的蜡烛,蜡烛的光透过暗箱上的一个小孔投影在暗箱的后方平面上,并在这个平面上形成一个倒立的蜡
    烛图像。在这个过程中,小孔模型能够把三维世界中的蜡烛投影到一个二维成像平面。同理,我们可以用这个简单的模型来解释相机的成像过程

     

     

     

     

     


    我们可以把一个世界坐标点先转换到相机坐标系,再除掉它最后一维的数值(即该点距离相机成像平面的深度),这相当于把最后一维进行归一化处理,得到点 P 在相机归一化平面上的投影:

    归一化坐标可看成相机前方`z = 1 处的平面上的一个点,这个 z = 1 平面也称为归一化平面。归一化坐标再左乘内参就得到了像素坐标,所以我们可以把像素坐标 [u; v]T 看成对归一化平面上的点进
    行量化测量的结果。从这个模型中也可以看出,如果对相机坐标同时乘以任意非零常数,归一化坐标都是一样的,这说明点的深度在投影过程中被丢失了,所以单目视觉中没法得到像素点的深度值。

     

     

    //
    // Created by Qian.
    //
    
    #include <opencv2/opencv.hpp>
    #include <string>
    
    using namespace std;
    
    string image_file = "../test.png";   // 请确保路径正确
    
    int main(int argc, char **argv) {
    
        // 本程序需要你自己实现去畸变部分的代码。尽管我们可以调用OpenCV的去畸变,但自己实现一遍有助于理解。
        // 畸变参数
        double k1 = -0.28340811, k2 = 0.07395907, p1 = 0.00019359, p2 = 1.76187114e-05;
        // 内参
        double fx = 458.654, fy = 457.296, cx = 367.215, cy = 248.375;
    
        cv::Mat image = cv::imread(image_file,CV_8UC1);   // 图像是灰度图,CV_8UC1
        int rows = image.rows, cols = image.cols;
        cv::Mat image_undistort = cv::Mat(rows, cols, CV_8UC1);   // 去畸变以后的图
    
        // 计算去畸变后图像的内容
        for (int v = 0; v < rows; v++)
            for (int u = 0; u < cols; u++) {
    
                double u_distorted = 0, v_distorted = 0;
                // TODO 按照公式,计算点(u,v)对应到畸变图像中的坐标(u_distorted, v_distorted) (~6 lines)
                // start your code here
                //首先转化成归一化坐标
                double x=(u-cx)/fx;
                double y=(v-cy)/fy;
                double r2=x*x+y*y;
    
                double x_distorted = x * (1 + k1 * r2 + k2 * r2 * r2)+2*p1*x*y+p2*(r2+2*x*x);
                double y_distorted= y * (1 + k1 * r2 + k2 * r2 * r2)+p1*(r2+2*y*y)+2*p2*x*y;
    //            double x_distorted = x * (1 + k1 * r2 + k2 * r2 * r2);
    //            double y_distorted= y * (1 + k1 * r2 + k2 * r2 * r2);
    
                //还原为像素坐标
                u_distorted = fx * x_distorted + cx;
                v_distorted = fy * y_distorted + cy;
                // end your code here
    
                // 赋值 (最近邻插值)
                if (u_distorted >= 0 && v_distorted >= 0 && u_distorted < cols && v_distorted < rows) {
                    image_undistort.at<uchar>(v, u) = image.at<uchar>((int) v_distorted, (int) u_distorted);
                } else {
                    image_undistort.at<uchar>(v, u) = 0;
                }
            }
    
        // 画图去畸变后图像
        cv::imshow("image undistorted", image_undistort);
        cv::waitKey();
    }
    
        return 0;
    }

     

     

     

     双目视觉

    #include <opencv2/opencv.hpp>
    #include <vector>
    #include <string>
    #include <Eigen/Core>
    #include <pangolin/pangolin.h>
    #include <unistd.h>
    
    using namespace std;
    using namespace Eigen;
    
    // 文件路径
    string left_file = "/home/qian/slambook2/ch5/stereo/left.png";
    string right_file = "/home/qian/slambook2/ch5/stereo/right.png";
    
    // 在pangolin中画图,已写好,无需调整
    void showPointCloud(
        const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud); //使用eigen库中的变量Vector、matrix等时需要这样写
    
    int main(int argc, char **argv) {
    
        // 内参
        double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
        // 基线
        double b = 0.573;
    
        // 读取图像
        cv::Mat left = cv::imread(left_file, 0);
        cv::Mat right = cv::imread(right_file, 0);
        cv::Ptr<cv::StereoSGBM> sgbm = cv::StereoSGBM::create(
            0, 96, 9, 8 * 9 * 9, 32 * 9 * 9, 1, 63, 10, 100, 32);    // 神奇的参数
        cv::Mat disparity_sgbm, disparity;
        sgbm->compute(left, right, disparity_sgbm);
        disparity_sgbm.convertTo(disparity, CV_32F, 1.0 / 16.0f);
    
        // 生成点云
        vector<Vector4d, Eigen::aligned_allocator<Vector4d>> pointcloud;
    
        // 如果你的机器慢,请把后面的v++和u++改成v+=2, u+=2
        for (int v = 0; v < left.rows; v++)
            for (int u = 0; u < left.cols; u++) {
                if (disparity.at<float>(v, u) <= 0.0 || disparity.at<float>(v, u) >= 96.0) continue;
    
                Vector4d point(0, 0, 0, left.at<uchar>(v, u) / 255.0); // 前三维为xyz,第四维为颜色
    
                // 根据双目模型计算 point 的位置
                double x = (u - cx) / fx;
                double y = (v - cy) / fy;
                double depth = fx * b / (disparity.at<float>(v, u));
                point[0] = x * depth;
                point[1] = y * depth;
                point[2] = depth;
    
                pointcloud.push_back(point);
            }
    
        cv::imshow("disparity", disparity / 96.0);
        cv::waitKey(0);
        // 画出点云
        showPointCloud(pointcloud);
        return 0;
    }
    
    void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud) {
    
        if (pointcloud.empty()) {
            cerr << "Point cloud is empty!" << endl;
            return;
        }
    
        pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);
        glEnable(GL_DEPTH_TEST);
        glEnable(GL_BLEND);
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    
        pangolin::OpenGlRenderState s_cam(
            pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
            pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
        );
    
        pangolin::View &d_cam = pangolin::CreateDisplay()
            .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
            .SetHandler(new pangolin::Handler3D(s_cam));
    
        while (pangolin::ShouldQuit() == false) {
            glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    
            d_cam.Activate(s_cam);
            glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
    
            glPointSize(2);
            glBegin(GL_POINTS);
            for (auto &p: pointcloud) {
                glColor3f(p[3], p[3], p[3]);
                glVertex3d(p[0], p[1], p[2]);
            }
            glEnd();
            pangolin::FinishFrame();
            usleep(5000);   // sleep 5 ms
        }
        return;
    }

    深度摄像头点云拼接

    #include <iostream>
    #include <fstream>
    #include <opencv2/opencv.hpp>
    #include <boost/format.hpp>  // for formating strings
    #include <sophus/se3.hpp>
    #include <pangolin/pangolin.h>
    
    using namespace std;
    typedef vector<Sophus::SE3d, Eigen::aligned_allocator<Sophus::SE3d>> TrajectoryType;
    typedef Eigen::Matrix<double, 6, 1> Vector6d;
    
    // 在pangolin中画图,已写好,无需调整
    void showPointCloud(
        const vector<Vector6d, Eigen::aligned_allocator<Vector6d>> &pointcloud);
    
    int main(int argc, char **argv) {
        vector<cv::Mat> colorImgs, depthImgs;    // 彩色图和深度图
        TrajectoryType poses;         // 相机位姿
    
        ifstream fin("./pose.txt");
        if (!fin) {
            cerr << "请在有pose.txt的目录下运行此程序" << endl;
            return 1;
        }
    
        for (int i = 0; i < 5; i++) {
            boost::format fmt("./%s/%d.%s"); //图像文件格式
            colorImgs.push_back(cv::imread((fmt % "color" % (i + 1) % "png").str()));
            depthImgs.push_back(cv::imread((fmt % "depth" % (i + 1) % "pgm").str(), -1)); // 使用-1读取原始图像
    
            double data[7] = {0};
            for (auto &d:data)
                fin >> d;
            Sophus::SE3d pose(Eigen::Quaterniond(data[6], data[3], data[4], data[5]),
                              Eigen::Vector3d(data[0], data[1], data[2]));
            poses.push_back(pose);
        }
    
        // 计算点云并拼接
        // 相机内参 
        double cx = 325.5;
        double cy = 253.5;
        double fx = 518.0;
        double fy = 519.0;
        double depthScale = 1000.0;
        vector<Vector6d, Eigen::aligned_allocator<Vector6d>> pointcloud;
        pointcloud.reserve(1000000);
    
        for (int i = 0; i < 5; i++) {
            cout << "转换图像中: " << i + 1 << endl;
            cv::Mat color = colorImgs[i];
            cv::Mat depth = depthImgs[i];
            Sophus::SE3d T = poses[i];
            for (int v = 0; v < color.rows; v++)
                for (int u = 0; u < color.cols; u++) {
                    unsigned int d = depth.ptr<unsigned short>(v)[u]; // 深度值
                    if (d == 0) continue; // 为0表示没有测量到
                    Eigen::Vector3d point;
                    point[2] = double(d) / depthScale;
                    point[0] = (u - cx) * point[2] / fx;
                    point[1] = (v - cy) * point[2] / fy;
                    Eigen::Vector3d pointWorld = T * point;
    
                    Vector6d p;
                    p.head<3>() = pointWorld;
                    p[5] = color.data[v * color.step + u * color.channels()];   // blue
                    p[4] = color.data[v * color.step + u * color.channels() + 1]; // green
                    p[3] = color.data[v * color.step + u * color.channels() + 2]; // red
                    pointcloud.push_back(p);
                }
        }
    
        cout << "点云共有" << pointcloud.size() << "个点." << endl;
        showPointCloud(pointcloud);
        return 0;
    }
    
    void showPointCloud(const vector<Vector6d, Eigen::aligned_allocator<Vector6d>> &pointcloud) {
    
        if (pointcloud.empty()) {
            cerr << "Point cloud is empty!" << endl;
            return;
        }
    
        pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);
        glEnable(GL_DEPTH_TEST);
        glEnable(GL_BLEND);
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    
        pangolin::OpenGlRenderState s_cam(
            pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
            pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
        );
    
        pangolin::View &d_cam = pangolin::CreateDisplay()
            .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
            .SetHandler(new pangolin::Handler3D(s_cam));
    
        while (pangolin::ShouldQuit() == false) {
            glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    
            d_cam.Activate(s_cam);
            glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
    
            glPointSize(2);
            glBegin(GL_POINTS);
            for (auto &p: pointcloud) {
                glColor3d(p[3] / 255.0, p[4] / 255.0, p[5] / 255.0);
                glVertex3d(p[0], p[1], p[2]);
            }
            glEnd();
            pangolin::FinishFrame();
            usleep(5000);   // sleep 5 ms
        }
        return;
    }

     

  • 相关阅读:
    单例模式-静态内部类方式
    单例模式-懒汉式(双重检验)
    单例模式-懒汉式
    sonarqube7.2版本web api简析
    sonarqube集成maven插件,上传扫描结果
    sonarQube快速入门7.2版本下载pmd插件,并设置只使用pmd规则
    gradle使用dokka插件出现Exception while loading package-list from ExternalDocumentationLinkImp
    让linux后解压的资源权限就是777(工作笔记)
    java并发 无锁cas的最简单理解
    java 必须要懂点的包 今日研究小结
  • 原文地址:https://www.cnblogs.com/long5683/p/11978952.html
Copyright © 2011-2022 走看看