Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of points (i, j, k)
such that the distance between i
and j
equals the distance between i
and k
(the order of the tuple matters).
Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000](inclusive).
Example:
Input: [[0,0],[1,0],[2,0]] Output: 2
Explanation: The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]
给定平面上所有两两不同的n个点,“回飞棒”是一组点(i, j, k),使i和j之间的距离等于i和k之间的距离(元组的顺序)。
找出回飞棒的数量。您可以假设n最多为500,点的坐标都在[-10000,10000](包括)范围内。
class Solution { public int numberOfBoomerangs(int[][] points) { int result = 0; // 新建hashmap hm HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>(); for (int count1 = 0; count1 < points.length; count1++) { for (int count2 = 0; count2 < points.length; count2++) { if (count1 == count2) continue; else { int distance = distance(points[count1], points[count2]); // Map的新方法getOrDefault(Object,V)允许调用者在代码语句中规定获得在map中符合提供的键的值,否则在没有找到提供的键的匹配项的时候返回一个“默认值”。 hm.put(distance, hm.getOrDefault(distance, 0) + 1); } } for (int val : hm.values()) { result += val * (val - 1); } hm.clear(); } return result; } int distance(int[] point1, int[] point2) { // 返回两点间的距离 return (point1[0] - point2[0]) * (point1[0] - point2[0]) + (point1[1] - point2[1]) * (point1[1] - point2[1]); } }