zoukankan      html  css  js  c++  java
  • 使用caffe训练mnist数据集

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始。

    学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe

    卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html

    Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 

    先讲解一下caffe设计的架构吧:

     

    训练mnist数据集使用 build/tools/caffe 

    训练步骤:

    准备数据:

    cd $CAFFE_ROOT   //安装caffe的根目录

    ./data/mnist/get_mnist.sh //下载mnist数据集
    ./examples/mnist/create_mnist.sh   //将图片转为lmdb数据格式 

     

    定义网络模型:

       首先定义数据层: 

      layer {
        name: "mnist"  //名字可以随便写 字符串类型
        type: "Data"  //类型 必须是 Data 字符串类型
        transform_param {
          scale: 0.00390625
        }
        data_param {
          source: "mnist_train_lmdb"
          backend: LMDB
          batch_size: 64
        }
        top: "data"
        top: "label"
      }

      定义卷基层:
      layer {
        name: "conv1"
        type: "Convolution"
        param { lr_mult: 1 } #定义w参数的学习率
        param { lr_mult: 2 } #定义b参数的学习率
        convolution_param {
          num_output: 20    #定义输出map数量
          kernel_size: 5
          stride: 1
          weight_filler {
            type: "xavier"
          }
          bias_filler {
            type: "constant"
          }
        }
        bottom: "data"
        top: "conv1"
      }
    定义pool层:
      layer {
        name: "pool1"
        type: "Pooling"
        pooling_param {
          kernel_size: 2
          stride: 2
          pool: MAX
        }
        bottom: "conv1"
        top: "pool1"
      }
    定义全连接层:
      layer {
        name: "ip1"
        type: "InnerProduct"
        param { lr_mult: 1 }
        param { lr_mult: 2 }
        inner_product_param {
          num_output: 500
          weight_filler {
            type: "xavier"
          }
          bias_filler {
            type: "constant"
          }
        }
        bottom: "pool2"
        top: "ip1"
      }
      定义relu层:
      layer {
        name: "relu1"
        type: "ReLU"
        bottom: "ip1"
        top: "ip1"
      }
    再定义一个全连接层: 注意这里的输出为 分类的个数
      layer {
        name: "ip2"
        type: "InnerProduct"
        param { lr_mult: 1 }
        param { lr_mult: 2 }
        inner_product_param {
          num_output: 10    #表示有10个类别 从0-9个数字
          weight_filler {
            type: "xavier"
          }
          bias_filler {
            type: "constant"
          }
        }
        bottom: "ip1"
        top: "ip2"
      }

      最后定义 损失函数
      layer {
        name: "loss"
        type: "SoftmaxWithLoss"
        bottom: "ip2"
        bottom: "label"
      }
    定义好网络模型后,需要定义 模型训练的策略, solver
    # The train/test net protocol buffer definition
    net: "examples/mnist/lenet_train_test.prototxt"
    # test_iter specifies how many forward passes the test should carry out.
    # In the case of MNIST, we have test batch size 100 and 100 test iterations,
    # covering the full 10,000 testing images.
    test_iter: 100   
    # Carry out testing every 500 training iterations.
    test_interval: 500
    # The base learning rate, momentum and the weight decay of the network.
    base_lr: 0.01
    momentum: 0.9
    weight_decay: 0.0005
    # The learning rate policy
    lr_policy: "inv"
    gamma: 0.0001
    power: 0.75
    # Display every 100 iterations
    display: 100
    # The maximum number of iterations
    max_iter: 10000
    # snapshot intermediate results
    snapshot: 5000   
    snapshot_prefix: "examples/mnist/lenet"
    # solver mode: CPU or GPU
    solver_mode: GPU  #使用gpu进行训练

    开始训练网络:
    cd $CAFFE_ROOT
    ./examples/mnist/train_lenet.sh
    你会看到类似下面的输出:
    I1203 net.cpp:66] Creating Layer conv1
    I1203 net.cpp:76] conv1 <- data
    I1203 net.cpp:101] conv1 -> conv1
    I1203 net.cpp:116] Top shape: 20 24 24
    I1203 net.cpp:127] conv1 needs backward computation.
    。。。。。
    I1203 net.cpp:142] Network initialization done.
    I1203 solver.cpp:36] Solver scaffolding done.
    I1203 solver.cpp:44] Solving LeNet
    。。。。。
    I1203 solver.cpp:84] Testing net
    I1203 solver.cpp:111] Test score #0: 0.9897
    I1203 solver.cpp:111] Test score #1: 0.0324599
    I1203 solver.cpp:126] Snapshotting to lenet_iter_10000
    I1203 solver.cpp:133] Snapshotting solver state to lenet_iter_10000.solverstate
    I1203 solver.cpp:78] Optimization Done.
    结束

    运行结构图:

     

    接下来的教程会结合源码详细展开 这三部做了什么 看懂caffe源码

    欢迎加入深度学习交流群,群号码:317703095

  • 相关阅读:
    解决在Pycharm中无法显示代码提示的问题
    解决在使用pip list时出现DEPRECATION
    Pycharm 有些库(函数)没有代码提示
    Oracle 11.2.0.4 For Windows 64bit+32bit 数据库
    Windows系统下oracle数据库每天定时备份
    PowerDesigner表创建脚本双引号问题
    Oracle11g 创建数据库中问题处理(必须运行Netca以配置监听程序)
    名人名言
    项目管理
    项目管理心得:一个项目经理的个人体会、经验总结(zz)
  • 原文地址:https://www.cnblogs.com/longriyao/p/8027682.html
Copyright © 2011-2022 走看看