zoukankan      html  css  js  c++  java
  • 先验概率与后验概率

    1. 先验概率

    通俗解释:就是根据以往经验得到的概率,属于客观概率。统计历史下的概率。

    2. 后验概率

    当下由因及果的概率。

    3. 通俗理解

    )先验——根据若干年的统计(经验)或者气候(常识),某地方下雨的概率;

    2)似然——下雨(果)的时候有乌云(因/证据/观察的数据)的概率,即已经有了果,对证据发生的可能性描述;

    3)后验——根据天上有乌云(原因或者证据/观察数据),下雨(结果)的概率;

    后验 ~ 先验*似然 : 存在下雨的可能(先验),下雨之前会有乌云(似然)~ 通过现在有乌云推断下雨概率(后验);

    3、再来一例:

    先验概率可理解为统计概率,后验概率可理解为条件概率。

    ------------------------------------------------------------------
    设定背景:酒至半酣,忽阴云漠漠,骤雨将至。

    情景一:
    “天不会下雨的,历史上这里下雨的概率是20%”----先验概率
    “但阴云漠漠时,下雨的概率是80%”----后验概率

    情景二:
    “飞飞别急着走啊,历史上酒桌上死人的概率只有5%“----先验概率
    ”可他是曹操啊,梦里都杀人“----后验概率


    4、吃瓜群众的例子


    用“瓜熟蒂落”这个因果例子,从概率(probability)的角度说一下,

    先验概率,就是常识、经验所透露出的“因”的概率,即瓜熟的概率。应该很清楚。

    后验概率,就是在知道“果”之后,去推测“因”的概率,也就是说,如果已经知道瓜蒂脱落,那么瓜熟的概率是多少。后验和先验的关系可以通过贝叶斯公式来求。也就是:

    P(瓜熟 | 已知蒂落)=P(瓜熟)×P(蒂落 | 瓜熟)/ P(蒂落)


    似然函数,是根据已知结果去推测固有性质的可能性(likelihood),是对固有性质的拟合程度,所以不能称为概率。在这里就是说,不要管什么瓜熟的概率,只care瓜熟与蒂落的关系。如果蒂落了,那么对瓜熟这一属性的拟合程度有多大。似然函数,一般写成L(瓜熟 | 已知蒂落),和后验概率非常像,区别在于似然函数把瓜熟看成一个肯定存在的属性,而后验概率把瓜熟看成一个随机变量。

    ---

    再扯一扯似然函数和条件概率的关系。似然函数就是条件概率的逆反。意为:

    L(瓜熟 | 已知蒂落)= C × P(蒂落 | 瓜熟),C是常数。具体来说,现在有1000个瓜熟了,落了800个,那条件概率是0.8。那我也可以说,这1000个瓜都熟的可能性是0.8C。

    注意,之所以加个常数项,是因为似然函数的具体值没有意义,只有看它的相对大小或者两个似然值的比率才有意义,后面还有例子。

    ----------------------------------------------------------------------------------------------------

    同理,如果理解上面的意义,分布就是一“串”概率。

    先验分布:现在常识不但告诉我们瓜熟的概率,也说明了瓜青、瓜烂的概率

    后验分布:在知道蒂落之后,瓜青、瓜熟、瓜烂的概率都是多少

    似然函数:在知道蒂落的情形下,如果以瓜青为必然属性,它的可能性是多少?如果以瓜熟为必然属性,它的可能性是多少?如果以瓜烂为必然属性,它的可能性是多少?似然函数不是分布,只是对上述三种情形下各自的可能性描述。

    那么我们把这三者结合起来,就可以得到:后验分布 正比于 先验分布 × 似然函数。先验就是设定一种情形,似然就是看这种情形下发生的可能性,两者合起来就是后验的概率。

    至于似然估计:

    就是不管先验和后验那一套,只看似然函数,现在蒂落了,可能有瓜青、瓜熟、瓜烂,这三种情况都有个似然值(L(瓜青):0.6、L(瓜熟):0.8、L(瓜烂):0.7),我们采用最大的那个,即瓜熟,这个时候假定瓜熟为必然属性是最有可能的。

    5、分布解:

    先验分布:根据一般的经验认为随机变量应该满足的分布
    后验分布:通过当前训练数据修正的随机变量的分布,比先验分布更符合当前数据
    似然估计:已知训练数据,给定了模型,通过让似然性极大化估计模型参数的一种方法
    后验分布往往是基于先验分布和极大似然估计计算出来的。

  • 相关阅读:
    Django项目:CRM(客户关系管理系统)--80--70PerfectCRM实现CRM业务流程(bpm)课程排行分页
    Django项目:CRM(客户关系管理系统)--79--69PerfectCRM实现CRM业务流程(bpm)学生讲师分页
    Django项目:CRM(客户关系管理系统)--78--68PerfectCRM实现CRM业务流程(bpm)报名缴费分页
    Django项目:CRM(客户关系管理系统)--77--67PerfectCRM实现CRM课程出勤排名
    Django项目:CRM(客户关系管理系统)--76--66PerfectCRM实现CRM课程作业排名
    mvc 过滤器
    join 和子查询优化
    发布mvc遇到的HTTP错误 403.14-Forbidden解决办法
    获取post传输参数
    iis url 重写
  • 原文地址:https://www.cnblogs.com/louieowrth/p/12416809.html
Copyright © 2011-2022 走看看