zoukankan      html  css  js  c++  java
  • Bias/variance tradeoff

        线性回归中有欠拟合与过拟合,例如下图: 则会形成欠拟合, 则会形成过拟合。

        尽管五次多项式会精确的预测训练集中的样本点,但在预测训练集中没有的数据,则不能很好的预测,也就是说有较大的泛化误差,上面的右边与左边的图都有很大的泛化误差,他们的情况各不相同,如果数据是非线性的,我们无法使用线性模型来精确的预测,即它的偏差很大,引起欠拟合。而如果像上面右图那样形成一个五次多项式的模型,很可能是我们的训练集数据很小的情况下建立的,它就不能反映出x与y更广泛的关系,这种模型有很大的偏差,引起过拟合。所以归根结底,学习算法其实就是找偏差方差的一个平衡点达到上面中图的效果。

        在证明偏差方差权衡前先来介绍两个在推导时要用到的两个定理。

        1.假设 是k个不同的事件,P(A)代表事件发生的概率,那么,这对于学过概率论的同学肯定容易推到出来。

        2.Hoeffding不等式是关于一组随机变量均值的概率不等式. 为一组随机变量, , 定义一组随机变量的均值为

    Hoeffding不等式可以表示为

    如果为一组独立同分布的参数为p的伯努利分布随机变量上述不等式可以表示为

        

        假设有一个训练集 ,样本服从独立同分布D,对于一个假设类h,定义训练误差为

        定义泛化误差:

        泛化误差即有一个新的样本点(x,y)服从分布D,类h判错这个样本的概率。使 ,通过选取θ来最小化训练误差的过程叫做经验风险最小化(empirical risk minimization (ERM)),

        我们定义Η为假设类的集合

    现在经验风险最小化可以改写为

    对于有限的假设类集合,通过上面的描述泛化误差就是独立同分布随机变量的期望值,代入到Hoeffding不等式

    这个式子表明了对于给定一个假设 ,假设样本数量m很大,泛化误差与训练误差很接近,应用到k个假设中

    两边同时被1减去得到

    对于给定一个γ和 ,至少多大的m能够保证 ,通过推导得到

    定义, 是在集合H里面具有最小训练误差的假设,即,又根据 最多相差一个 ,所以可以得出下列的推导步骤:

    从而得到

    这个不等式验证了本文一开始得出的结论,假设类的集合k增大时,minε(h)肯定是越来越小的,而第二项的对数式则随着k的增大而减小,k很小时就是前面所说的欠拟合的情况,相反k很大时即过拟合,两种情况都会导致泛化误差 增大,我们要做的就是选择一个合适的k,来最小化泛化误差。

  • 相关阅读:
    Java实现 蓝桥杯VIP 算法训练 字符串逆序
    Java实现 蓝桥杯VIP 算法训练 字符串逆序
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 成绩的等级输出
    Java实现 蓝桥杯VIP 算法训练 成绩的等级输出
    Qt 自定义model实现文件系统的文件名排序
  • 原文地址:https://www.cnblogs.com/loujiayu/p/3508051.html
Copyright © 2011-2022 走看看