zoukankan      html  css  js  c++  java
  • Fast RCNN 训练自己的数据集(3训练和检测)

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/

    https://github.com/YihangLou/fast-rcnn-train-another-dataset 这是我在github上修改的几个文件的链接,求星星啊,求星星啊(原谅我那么不要脸~~)

    在之前两篇文章中我介绍了怎么编译Fast RCNN,和怎么修改Fast RCNN的读取数据接口,接下来我来说明一下怎么来训练网络和之后的检测过程
    先给看一下极好的检测效果

    https://github.com/YihangLou/fast-rcnn-train-another-dataset

    1.预训练模型介绍

    首先在data目录下,有两个目录就是之前在1中解压好

    • fast_rcnn_models/
    • imagenet_models/

    fast_rcnn_model文件夹下面是作者用fast rcnn训练好的三个网络,分别对应着小、中、大型网络,大家可以试用一下这几个网络,看一些检测效果,他们训练都迭代了40000次,数据集都是pascal_voc的数据集。

    1. caffenet_fast_rcnn_iter_40000.caffemodel
    2. vgg_cnn_m_1024_fast_rcnn_iter_40000.caffemodel
    3. vgg16_fast_rcnn_iter_40000.caffemodel

    imagenet_model文件夹下面是在Imagenet上训练好的通用模型,在这里用来初始化网络的参数

    1. CaffeNet.v2.caffemodel
    2. VGG_CNN_M_1024.v2.caffemodel
    3. VGG16.v2.caffemodel

    在这里我比较推荐先用中型网络训练,中型网络训练和检测的速度都比较快,效果也都比较理想,大型网络的话训练速度比较慢,我当时是5000多个标注信息,网络配置默认,中型网络训练大概两三个小时,大型网络的话用十几个小时,需要注意的是网络训练最好用GPU,CPU的话太慢了,我当时用的实验室的服务器,有16块Tesla K80,用起来真的是灰常爽!

    2. 修改模型文件配置

    模型文件在models下面对应的网络文件夹下,在这里我用中型网络的配置文件修改为例子
    比如:我的检测目标物是car ,那么我的类别就有两个类别即 background 和 car

    因此,首先打开网络的模型文件夹,打开train.prototxt
    修改的地方重要有三个
    分别是个地方

    1. 首先在data层把num_classes 从原来的21类 20类+背景 ,改成 2类 车+背景
    2. 接在在cls_score层把num_output 从原来的21 改成 2
    3. 在bbox_pred层把num_output 从原来的84 改成8, 为检测类别个数乘以4,比如这里是2类那就是2*4=8

    OK,如果你要进一步修改网络训练中的学习速率,步长,gamma值,以及输出模型的名字,需要在同目录下的solver.prototxt中修改。
    如下图:

    train_net: "models/VGG_CNN_M_1024/train.prototxt"
    base_lr: 0.001
    lr_policy: "step"
    gamma: 0.1
    stepsize: 30000
    display: 20
    average_loss: 100
    momentum: 0.9
    weight_decay: 0.0005
    # We disable standard caffe solver snapshotting and implement our own snapshot
    # function
    snapshot: 0
    # We still use the snapshot prefix, though
    snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn"
    #debug_info: true
    
    
    

    3.启动Fast RCNN网络训练

    **启动训练:
    ./tools/train_net.py --gpu 11 --solver models/VGG_CNN_M_1024_LOUYIHANG/solver.prototxt --weights data/imagenet_models/VGG_CNN_M_1024.v2.caffemodel --imdb KakouTrain
    **

    参数讲解

    • 这里的--是两个-,markdown写的,大家不要输错
    • train_net.py是网络的训练文件,之后的参数都是附带的输入参数
    • --gpu 代表机器上的GPU编号,如果是nvidia系列的tesla显卡,可以在终端中输入nvidia-smi来查看当前的显卡负荷,选择合适的显卡
    • --solver 代表模型的配置文件,train.prototxt的文件路径已经包含在这个文件之中
    • --weights 代表初始化的权重文件,这里用的是Imagenet上预训练好的模型,中型的网络我们选择用VGG_CNN_M_1024.v2.caffemodel
    • --imdb 这里给出的训练的数据库名字需要在factory.py的__sets中,我在文件里面有__sets['KakouTrain'],train_net.py这个文件会调用factory.py再生成kakou这个类,来读取数据

    4.启动Fast RCNN网络检测

    我修改了tools下面的demo.py这个文件,用来做检测,并且将检测的坐标结果输出到相应的txt文件中
    可以看到原始的demo.py 是用网络测试了两张图像,并做可视化输出,有具体的检测效果,但是我是在Linux服务器的终端下,没有display device,因此部分代码要少做修改

    下面是原始的demo.py:

    #!/usr/bin/env python
    
    # --------------------------------------------------------
    # Fast R-CNN
    # Copyright (c) 2015 Microsoft
    # Licensed under The MIT License [see LICENSE for details]
    # Written by Ross Girshick
    # --------------------------------------------------------
    
    """
    Demo script showing detections in sample images.
    
    See README.md for installation instructions before running.
    """
    
    import _init_paths
    from fast_rcnn.config import cfg
    from fast_rcnn.test import im_detect
    from utils.cython_nms import nms
    from utils.timer import Timer
    import matplotlib.pyplot as plt
    import numpy as np
    import scipy.io as sio
    import caffe, os, sys, cv2
    import argparse
    
    CLASSES = ('__background__',
               'aeroplane', 'bicycle', 'bird', 'boat',
               'bottle', 'bus', 'car', 'cat', 'chair',
               'cow', 'diningtable', 'dog', 'horse',
               'motorbike', 'person', 'pottedplant',
               'sheep', 'sofa', 'train', 'tvmonitor')
    
    NETS = {'vgg16': ('VGG16',
                      'vgg16_fast_rcnn_iter_40000.caffemodel'),
            'vgg_cnn_m_1024': ('VGG_CNN_M_1024',
                               'vgg_cnn_m_1024_fast_rcnn_iter_40000.caffemodel'),
            'caffenet': ('CaffeNet',
                         'caffenet_fast_rcnn_iter_40000.caffemodel')}
    
    
    def vis_detections(im, class_name, dets, thresh=0.5):
        """Draw detected bounding boxes."""
        inds = np.where(dets[:, -1] >= thresh)[0]
        if len(inds) == 0:
            return
    
        im = im[:, :, (2, 1, 0)]
        fig, ax = plt.subplots(figsize=(12, 12))
        ax.imshow(im, aspect='equal')
        for i in inds:
            bbox = dets[i, :4]
            score = dets[i, -1]
    
            ax.add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='red', linewidth=3.5)
                )
            ax.text(bbox[0], bbox[1] - 2,
                    '{:s} {:.3f}'.format(class_name, score),
                    bbox=dict(facecolor='blue', alpha=0.5),
                    fontsize=14, color='white')
    
        ax.set_title(('{} detections with '
                      'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                      thresh),
                      fontsize=14)
        plt.axis('off')
        plt.tight_layout()
        plt.draw()
    
    def demo(net, image_name, classes):
        """Detect object classes in an image using pre-computed object proposals."""
    
        # Load pre-computed Selected Search object proposals
        box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo',
                                image_name + '_boxes.mat')
        obj_proposals = sio.loadmat(box_file)['boxes']
    
        # Load the demo image
        im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg')
        im = cv2.imread(im_file)
    
        # Detect all object classes and regress object bounds
        timer = Timer()
        timer.tic()
        scores, boxes = im_detect(net, im, obj_proposals)
        timer.toc()
        print ('Detection took {:.3f}s for '
               '{:d} object proposals').format(timer.total_time, boxes.shape[0])
    
        # Visualize detections for each class
        CONF_THRESH = 0.8
        NMS_THRESH = 0.3
        for cls in classes:
            cls_ind = CLASSES.index(cls)
            cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
            cls_scores = scores[:, cls_ind]
            dets = np.hstack((cls_boxes,
                              cls_scores[:, np.newaxis])).astype(np.float32)
            keep = nms(dets, NMS_THRESH)
            dets = dets[keep, :]
            print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls,
                                                                        CONF_THRESH)
            vis_detections(im, cls, dets, thresh=CONF_THRESH)
    
    def parse_args():
        """Parse input arguments."""
        parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
        parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                            default=0, type=int)
        parser.add_argument('--cpu', dest='cpu_mode',
                            help='Use CPU mode (overrides --gpu)',
                            action='store_true')
        parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                            choices=NETS.keys(), default='vgg16')
    
        args = parser.parse_args()
    
        return args
    
    if __name__ == '__main__':
        args = parse_args()
    
        prototxt = os.path.join(cfg.ROOT_DIR, 'models', NETS[args.demo_net][0],
                                'test.prototxt')
        caffemodel = os.path.join(cfg.ROOT_DIR, 'data', 'fast_rcnn_models',
                                  NETS[args.demo_net][1])
    
        if not os.path.isfile(caffemodel):
            raise IOError(('{:s} not found.
    Did you run ./data/script/'
                           'fetch_fast_rcnn_models.sh?').format(caffemodel))
    
        if args.cpu_mode:
            caffe.set_mode_cpu()
        else:
            caffe.set_mode_gpu()
            caffe.set_device(args.gpu_id)
        net = caffe.Net(prototxt, caffemodel, caffe.TEST)
    
        print '
    
    Loaded network {:s}'.format(caffemodel)
    
        print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
        print 'Demo for data/demo/000004.jpg'
        demo(net, '000004', ('car',))
    
        print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
        print 'Demo for data/demo/001551.jpg'
        demo(net, '001551', ('sofa', 'tvmonitor'))
    
        plt.show()
    
    

    复制这个demo.py 修改成CarFaceTest.py,下面是修改后的文件
    修改后的文件主要是添加了outputDetectionResult和runDetection两个函数, 添加了部分注释

    #!/usr/bin/env python
    # --------------------------------------------------------
    # Fast R-CNN
    # Copyright (c) 2015 Microsoft
    # Licensed under The MIT License [see LICENSE for details]
    # Written by Ross Girshick
    # --------------------------------------------------------
    
    """
    Demo script showing detections in sample images.
    
    See README.md for installation instructions before running.
    """
    
    import _init_paths
    from fast_rcnn.config import cfg
    from fast_rcnn.test import im_detect
    from utils.cython_nms import nms
    from utils.timer import Timer
    import matplotlib.pyplot as plt
    import numpy as np
    import scipy.io as sio
    import caffe, os, sys, cv2
    import argparse
    
    #CLASSES = ('__background__','aeroplane','bicycle','bird','boat',
    #		'bottle','bus','car','cat','chair','cow','diningtable','dog','horse'
    #		'motorbike','person','pottedplant','sheep','sofa','train','tvmonitor')
    
    CLASSES = ('__background__','car') #需要跟自己训练的数据集中的类别一致,原来是21类的voc数据集,自己的数据集就是car和background
    
    NETS = {'vgg16': ('VGG16',
                      'vgg16_fast_rcnn_iter_40000.caffemodel'),
            'vgg_cnn_m_1024': ('VGG_CNN_M_1024',
                               'vgg_cnn_m_1024_fast_rcnn_iter_40000.caffemodel'),
    	'vgg_cnn_m_1024_louyihang': ('VGG_CNN_M_1024_LOUYIHANG',
    			   'vgg_cnn_m_1024_fast_rcnn_louyihang_iter_40000.caffemodel'),
            'caffenet': ('CaffeNet',
                         'caffenet_fast_rcnn_iter_40000.caffemodel'),
    	'caffenet_louyihang':('CaffeNet_LOUYIHANG',
    		     'caffenet_fast_rcnn_louyihang_iter_40000.caffemodel'),
    	'vgg16_louyihang':('VGG16_LOUYIHANG',
    			   'vgg16_fast_rcnn_louyihang_iter_40000.caffemodel')}#映射到对应的模型文件
    
    def outputDetectionResult(im, class_name, dets, thresh=0.5): #打开相应的输出文件
        outputFile = open('CarDetectionResult.txt')
        inds = np.where(dets[:,-1] >= thresh)[0]
        if len(inds) == 0:
            return
    def runDetection (net, basePath, testFileName,classes):#这个函数是自己后加的,取代了demo函数,给定测试数据列表
        ftest = open(testFileName,'r')
        imageFileName = basePath+'/' + ftest.readline().strip()
        num = 1
        outputFile = open('CarDetectionResult.txt','w')
        while imageFileName:
    	print imageFileName
    	print 'now is ', num
    	num +=1
    	imageFileBaseName = os.path.basename(imageFileName)
    	imageFileDir = os.path.dirname(imageFileName)
    	boxFileName = imageFileDir +'/'+imageFileBaseName.replace('.jpg','_boxes.mat')
    	print boxFileName
    	obj_proposals = sio.loadmat(boxFileName)['boxes']
    	#obj_proposals[:,2] = obj_proposals[:, 2] + obj_proposals[:, 0]#这里也需要注意,OP里面的坐标数据是否为x1y1x2y2还是x1y1wh
    	#obj_proposals[:,3] = obj_proposals[:, 3] + obj_proposals[:, 1]
    	im = cv2.imread(imageFileName)
    	timer = Timer()
    	timer.tic()
    	scores, boxes = im_detect(net, im, obj_proposals)#检测函数
    	timer.toc()
    	print ('Detection took {:.3f} for '
                   '{:d} object proposals').format(timer.total_time, boxes.shape[0])
    	CONF_THRESH = 0.8
    	NMS_THRESH = 0.3#NMS参数用来控制非极大值抑制
            for cls in classes:
                cls_ind = CLASSES.index(cls)
                cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
                cls_scores = scores[:, cls_ind]
                dets = np.hstack((cls_boxes,
                              cls_scores[:, np.newaxis])).astype(np.float32)
                keep = nms(dets, NMS_THRESH)
                dets = dets[keep, :]
                print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls,
                                                                        CONF_THRESH)
    	    inds = np.where(dets[:, -1] >= CONF_THRESH)[0]
    	    print 'inds.size', inds.size
    	    if len(inds) != 0:
    	        outputFile.write(imageFileName+' ')
    		outputFile.write(str(inds.size)+' ')将检测的结果写出相应的文件里
    	        for i in inds:
    		    bbox = dets[i, :4]
    		    outputFile.write(str(int(bbox[0]))+' '+ str(int(bbox[1]))+' '+ str(int(bbox[2]))+' '+ str(int(bbox[3]))+' ')
    	        outputFile.write('
    ')
    	    else:
    	        outputFile.write(imageFileName +' 0' '
    ')
    	temp = ftest.readline().strip()
    	if temp:
    	    imageFileName = basePath+'/' + temp
    	else:
    	    break
    def vis_detections(im, class_name, dets, thresh=0.5):#这个函数需要加以说明,这个函数虽然没有用,但是我的服务器上没有输出设备
        """Draw detected bounding boxes."""#因此要将部分用到显示的函数给注释掉,否则运行会报错
        inds = np.where(dets[:, -1] >= thresh)[0]
        print 'inds.shape', inds.shape
        print inds
        print 'inds.size', inds.size
        if len(inds) == 0:
            return
            #im = im[:, :, (2, 1, 0)]
        #fig, ax = plt.subplots(figsize=(12, 12))
        #ax.imshow(im, aspect='equal')
        #for i in inds:
        #    bbox = dets[i, :4]
        #    score = dets[i, -1]
    
        #    ax.add_patch(
        #        plt.Rectangle((bbox[0], bbox[1]),
        #                      bbox[2] - bbox[0],
        #                      bbox[3] - bbox[1], fill=False,
        #                      edgecolor='red', linewidth=3.5)
        #        )
        #    ax.text(bbox[0], bbox[1] - 2,
        #            '{:s} {:.3f}'.format(class_name, score),
        #            bbox=dict(facecolor='blue', alpha=0.5),
        #            fontsize=14, color='white')
    
        #ax.set_title(('{} detections with '
        #              'p({} | box) >= {:.1f}').format(class_name, class_name,
        #                                              thresh),
        #              fontsize=14)
        #plt.axis('off')
        #plt.tight_layout()
        #plt.draw()
    
    def demo(net, image_name, classes):#原来的demo函数,没有修改
        """Detect object classes in an image using pre-computed object proposals."""
    
        # Load pre-computed Selected Search object proposals
        #box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo',image_name + '_boxes.mat')
        basePath='/home/chenjie/DataSet/500CarTestDataSet2'
        box_file = os.path.join(basePath,image_name + '_boxes.mat')
        obj_proposals = sio.loadmat(box_file)['boxes']
        # Load the demo image
        #im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg')
        im_file = os.path.join(basePath, image_name + '.jpg')
        im = cv2.imread(im_file)
    
        # Detect all object classes and regress object bounds
        timer = Timer()
        timer.tic()
        scores, boxes = im_detect(net, im, obj_proposals)
        timer.toc()
        print ('Detection took {:.3f}s for '
               '{:d} object proposals').format(timer.total_time, boxes.shape[0])
    
        # Visualize detections for each class
        CONF_THRESH = 0.8
        NMS_THRESH = 0.3
        for cls in classes:
            cls_ind = CLASSES.index(cls)
            cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
            cls_scores = scores[:, cls_ind]
            dets = np.hstack((cls_boxes,
                              cls_scores[:, np.newaxis])).astype(np.float32)
            keep = nms(dets, NMS_THRESH)
            dets = dets[keep, :]
            print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls,
                                                                        CONF_THRESH)
    
            vis_detections(im, cls, dets, thresh=CONF_THRESH)
    
    def parse_args():
        """Parse input arguments."""
        parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
        parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                            default=0, type=int)
        parser.add_argument('--cpu', dest='cpu_mode',
                            help='Use CPU mode (overrides --gpu)',
                            action='store_true')
        parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                            choices=NETS.keys(), default='vgg16')
    
        args = parser.parse_args()
    
        return args
    
    if __name__ == '__main__':
        args = parse_args()
    
        prototxt = os.path.join(cfg.ROOT_DIR, 'models', NETS[args.demo_net][0],
                                'test.prototxt')
        #caffemodel = os.path.join(cfg.ROOT_DIR, 'data', 'fast_rcnn_models',
        #                          NETS[args.demo_net][1])
        #caffemodel = '/home/chenjie/fast-rcnn/output/default/KakouTrain/vgg16_fast_rcnn_louyihang_iter_40000.caffemodel'
    	#caffemodel = '/home/chenjie/louyihang/fast-rcnn/output/default/KakouTrain/caffenet_fast_rcnn_louyihang_iter_40000.caffemodel'
        caffemodel = '/home/chenjie/fast-rcnn/output/default/KakouTrain/vgg_cnn_m_1024_fast_rcnn_louyihang_iter_40000.caffemodel'#我在这里直接指定了训练好的模型文件,训练好的模型文件是在工程根目录下的,output/default/对应的数据库名字下面
        if not os.path.isfile(caffemodel):
            raise IOError(('{:s} not found.
    Did you run ./data/script/'
                           'fetch_fast_rcnn_models.sh?').format(caffemodel))
    
        if args.cpu_mode:
            caffe.set_mode_cpu()
        else:
            caffe.set_mode_gpu()
            caffe.set_device(args.gpu_id)
        net = caffe.Net(prototxt, caffemodel, caffe.TEST)
    
        print '
    
    Loaded network {:s}'.format(caffemodel)
    
        #demo(net, 'Target0/000001', ('car',))
    	#输入对应的测试图像列表,需要在同级目录下摆放同名的_boxes.mat文件,它会自动的替换后缀名!
        #runDetection(net, '/home/chenjie/DataSet/temptest','/home/chenjie/DataSet/temptest/Imagelist.txt',('car',))
        runDetection(net, '/home/chenjie/DataSet/500CarTestDataSet2','/home/chenjie/DataSet/500CarTestDataSet2/Imagelist.txt',('car',))
        #runDetection(net, '/home/chenjie/DataSet/Kakou_Test_Scale0.25/','/home/chenjie/DataSet/Kakou_Test_Scale0.25/imagelist.txt',('car',))
        #runDetection(net, '/home/chenjie/DataSet/Images_Version1_Test_Boxes','/home/chenjie/DataSet/Images_Version1_Test_Boxes/ImageList_Version1_List.txt',('car',))
        #plt.show()
    
    

    5.检测结果

    训练数据集

    首先给出我的训练数据集,其实我的训练数据集并不是太复杂的

    测试数据集

    输出检测结果到txt文件中,

    测试效果

    在复杂场景下的测试效果非常好,速度也非常快,中型网络监测平均每张在K80显卡下时0.1~0.2S左右,图像的尺寸是480*640,6000张测试数据集下达到的准确率是98%!!!

  • 相关阅读:
    Gitlab的安装
    转 Java操作PDF之iText详细入门
    ElasticSearch聚合(转)
    谷歌搜索技巧(转)https://www.runningcheese.com/google
    自学elastic search
    WinForm richtextbox 关键字变红色
    https采集12306(复制)
    LTS
    学习Android MediaPlayer
    UML基础知识
  • 原文地址:https://www.cnblogs.com/louyihang-loves-baiyan/p/4906690.html
Copyright © 2011-2022 走看看