zoukankan      html  css  js  c++  java
  • Caffe CNN特征可视化

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/

    以下部分代码是根据caffe的python接口,从一次forword中取出param和blob里面的卷积核 和响应的卷积图。

    import numpy as np
    import matplotlib.pyplot as plt
    import os
    import caffe
    import sys
    import pickle
    import cv2
    
    caffe_root = '../'  
    
    deployPrototxt =  '/home/chenjie/louyihang/caffe/models/bvlc_reference_caffenet/deploy_louyihang.prototxt'
    modelFile = '/home/chenjie/louyihang/caffe/models/bvlc_reference_caffenet/caffenet_carmodel_louyihang_iter_50000.caffemodel'
    meanFile = 'python/caffe/imagenet/ilsvrc_2012_mean.npy'
    imageListFile = '/home/chenjie/DataSet/CompCars/data/train_test_split/classification/test_model431_label_start0.txt'
    imageBasePath = '/home/chenjie/DataSet/CompCars/data/cropped_image'
    resultFile = 'PredictResult.txt'
    
    #网络初始化
    def initilize():
        print 'initilize ... '
        sys.path.insert(0, caffe_root + 'python')
        caffe.set_mode_gpu()
        caffe.set_device(4)
        net = caffe.Net(deployPrototxt, modelFile,caffe.TEST)
        return net
    
    #取出网络中的params和net.blobs的中的数据
    def getNetDetails(image, net):
        # input preprocessing: 'data' is the name of the input blob == net.inputs[0]
        transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
        transformer.set_transpose('data', (2,0,1))
        transformer.set_mean('data', np.load(caffe_root + meanFile ).mean(1).mean(1)) # mean pixel
        transformer.set_raw_scale('data', 255)  
        # the reference model operates on images in [0,255] range instead of [0,1]
        transformer.set_channel_swap('data', (2,1,0))  
        # the reference model has channels in BGR order instead of RGB
        # set net to batch size of 50
        net.blobs['data'].reshape(1,3,227,227)
    
        net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(image))
        out = net.forward()
        
        #网络提取conv1的卷积核
        filters = net.params['conv1'][0].data
        with open('FirstLayerFilter.pickle','wb') as f:
           pickle.dump(filters,f)
        vis_square(filters.transpose(0, 2, 3, 1))
        #conv1的特征图
        feat = net.blobs['conv1'].data[0, :36]
        with open('FirstLayerOutput.pickle','wb') as f:
           pickle.dump(feat,f)
        vis_square(feat,padval=1)
        pool = net.blobs['pool1'].data[0,:36]
        with open('pool1.pickle','wb') as f:
           pickle.dump(pool,f)
        vis_square(pool,padval=1)
    
    
    # 此处将卷积图和进行显示,
    def vis_square(data, padsize=1, padval=0 ):
        data -= data.min()
        data /= data.max()
        
        #让合成图为方
        n = int(np.ceil(np.sqrt(data.shape[0])))
        padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
        data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
        #合并卷积图到一个图像中
        
        data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
        data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
        print data.shape
        plt.imshow(data)
    
    if __name__ == "__main__":
        net = initilize()
        testimage = '../data/MyTest/visualize_test.jpg'
        getNetDetails(testimage, net)
    
    

    输入的测试图像

    第一层的卷积核和卷积图,可以看到一些明显的边缘轮廓,左侧是相应的卷积核

    第一个Pooling层的特征图

    第二层卷积特征图

    第二层pooling的特征图,可以看到pooling之后,对conv的特征有部分强化,我网络中使用的max-pooling,但是到了pooling2已经出现一些离散的块了,已经有些抽象了,难以看出什么东西

  • 相关阅读:
    Spring Boot 快速入门
    mySql 主从复制linux配置
    Neural Networks for Machine Learning by Geoffrey Hinton (1~2)
    DIV浮动IE文本产生3象素的bug
    Leet Code OJ 338. Counting Bits [Difficulty: Medium]
    Unity3D:Gizmos画圆(原创)
    科学世界的人文关怀:开源科学与人工智能
    使用c#訪问Access数据库时,提示找不到可安装的 ISAM
    Android API Guides---Services
    《从0到1》读书笔记第一章"未来的挑战"第2记:做老子还是做孙子
  • 原文地址:https://www.cnblogs.com/louyihang-loves-baiyan/p/5134671.html
Copyright © 2011-2022 走看看