题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1005
题目:
Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 170367 Accepted Submission(s): 42027
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
题意概括:输入三个数A B n,根据题目给出的公式f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.计算f(n)。
解题思路:我们从公式得出一个结论:无论n有多大,f(n)总为一个不大于7的数,而且,f(n)是根据f(n-1)和f(n-2)得到的,所以f(n)必成一个循环数组,所以这个数组最坏的可能的循环节为7*7=49,并且49一定是这个数组的循环节,所以可以根据打表前49个数据,并对49取余得到相应的答案。这就是抽屉原理,详情请自行百度。
AC代码:
# include <stdio.h> int a,b; int f(int x,int y) { int sum; sum=(a*x+b*y)%7; return sum; } int main () { int i,n,ret,l,m[1010]; m[1]=1; m[2]=1; while(scanf("%d%d%d",&a,&b,&n)!=EOF) { if(!a&&!b&&!n) break; for(i=3;i<100;i++)//根据抽屉原理,循环节必在前五十个中 m[i]=f(m[i-1],m[i-2]); printf("%d ",m[n%49]); } return 0; }