Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given[0,1,0,2,1,0,1,3,2,1,2,1], return6.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
题意:求所有能收集到的雨水
思路:
代码如下:
1 class Solution { 2 public: 3 int trap(int A[], int n) 4 { 5 int maxIdx=0; 6 for(int i=0;i<n;++i) 7 { 8 if(A[i]>A[maxIdx]) 9 maxIdx=i; 10 } 11 12 int left=0,right=0; 13 int sum=0; 14 for(int i=0;i<maxIdx;++i) //计算左边容量 15 { 16 if(left>A[i]) 17 sum+=left-A[i]; 18 else 19 left=A[i]; 20 } 21 for(int i=n-1;i>maxIdx;i--) //加上右边容量 22 { 23 if(right>A[i]) 24 sum+=right-A[i]; 25 else 26 right=A[i]; 27 } 28 29 return sum; 30 } 31 };
方法二:这题和最大水容器有点类似。定义两个指针,分别指向数组的两端,然后从两边向中间变历。具体思路:取两端中值较小(lower)的那段开始向中间遍历,若下一比lower小,则sum加上两者差值就行,left++,对应的值再和lower比较,若还是小于则继续加上差值,若不小于了,则将该值重新和right对应的值比较,重新确定lower值。重复上述过程。这里要注意的是:若连续是左端(右端)为较小值那端,Lower应该是固定的,直到条件不满足。代码如下:
1 class Solution { 2 public: 3 int trap(int A[], int n) 4 { 5 int left=0,right=n-1; 6 int sum=0; 7 8 while(left<right) 9 { 10 int lower=min(left,right); 11 if(A[left]<A[right]) 12 { 13 left++; 14 while(left<right&&A[left]<lower) 15 sum+=A[lower]-A[left]; 16 } 17 else 18 { 19 right--; 20 while(left<right&&A[right]<lower) 21 sum+=A[lower]-A[right]; 22 } 23 } 24 return sum; 25 } 26 };