zoukankan      html  css  js  c++  java
  • Scipy.optimization

    1、 Optimization

    a) Local Optimizationi. minimize(fun, x0[, args, method, jac, hess, ...]) Minimization of scalar function of one or more variables.
    ii. minimize_scalar(fun[, bracket, bounds, ...]) Minimization of scalar function of one variable.
    iii. OptimizeResult Represents the optimization result.
    iv. OptimizeWarning


    b) Equation (Local) Minimizers
    i. leastsq(func, x0[, args, Dfun, full_output, ...]) Minimize the sum of squares of a set of equations.
    ii. least_squares(fun, x0[, jac, bounds, ...]) Solve a nonlinear least-squares problem with bounds on the variables.
    iii. nnls(A, b) Solve argmin_x || Ax - b ||_2 for x>=0.
    iv. lsq_linear(A, b[, bounds, method, tol, ...]) Solve a linear least-squares problem with bounds on the variables.


    c) Global Optimization
    i. basinhopping(func, x0[, niter, T, stepsize, ...]) Find the global minimum of a function using the basin-hopping algorithm
    ii. brute(func, ranges[, args, Ns, full_output, ...]) Minimize a function over a given range by brute force.
    iii. differential_evolution(func, bounds[, args, ...]) Finds the global minimum of a multivariate function.

    d) Rosenbrock function
    i. rosen(x) The Rosenbrock function.
    ii. rosen_der(x) The derivative (i.e.
    iii. rosen_hess(x) The Hessian matrix of the Rosenbrock function.
    iv. rosen_hess_prod(x, p) Product of the Hessian matrix of the Rosenbrock function with a vector

    2、 Fitting

    curve_fit(f, xdata, ydata[, p0, sigma, ...]) Use non-linear least squares to fit a function, f, to data.

    3、 Root finding

    1)Scalar functions
    a) brentq(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in a bracketing interval using Brent’s method.
    b) brenth(f, a, b[, args, xtol, rtol, maxiter, ...]) Find root of f in [a,b].
    c) ridder(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in an interval.
    d) bisect(f, a, b[, args, xtol, rtol, maxiter, ...]) Find root of a function within an interval.
    e) newton(func, x0[, fprime, args, tol, ...]) Find a zero using the Newton-Raphson or secant method.

    2)Multidimensional
    root(fun, x0[, args, method, jac, tol, ...]) Find a root of a vector function.
    fsolve(func, x0[, args, fprime, ...]) Find the roots of a function.
    broyden1(F, xin[, iter, alpha, ...]) Find a root of a function, using Broyden’s first Jacobian approximation.
    broyden2(F, xin[, iter, alpha, ...]) Find a root of a function, using Broyden’s second Jacobian approximation.

    4、 Linear Programming

    a) linprog(c[, A_ub, b_ub, A_eq, b_eq, bounds, ...]) Minimize a linear objective function subject to linear equality and inequality constraints.b) linprog_verbose_callback(xk, **kwargs) A sample callback function demonstrating the linprog callback interface.

    5、 Utilities

    a) approx_fprime(xk, f, epsilon, *args) Finite-difference approximation of the gradient of a scalar function.

    b) bracket(func[, xa, xb, args, grow_limit, ...]) Bracket the minimum of the function.
    c) check_grad(func, grad, x0, *args, **kwargs) Check the correctness of a gradient function by comparing it against a (forward) finite-line_search(f, myfprime, xk, pk[, gfk, ...]) Find alpha that satisfies strong Wolfe conditions.
    d) show_options([solver, method, disp]) Show documentation for additional options of optimization solvers.
    e) LbfgsInvHessProduct(sk, yk) Linear operator for the L-BFGS approximate inverse Hessian.

    6、 Nonlinear solvers

    Large-scale nonlinear solvers:
    newton_krylov(F, xin[, iter, rdiff, method, ...]) Find a root of a function, using Krylov approximation for inverse Jacobian.
    anderson(F, xin[, iter, alpha, w0, M, ...]) Find a root of a function, using (extended) Anderson mixing.
    General nonlinear solvers:
    broyden1(F, xin[, iter, alpha, ...]) Find a root of a function, using Broyden’s first Jacobian
    approximation.
    broyden2(F, xin[, iter, alpha, ...]) Find a root of a function, using Broyden’s second Jacobian
    approximation.
    Simple iterations:
    excitingmixing(F, xin[, iter, alpha, ...]) Find a root of a function, using a tuned diagonal Jacobian approximation.
    linearmixing(F, xin[, iter, alpha, verbose, ...]) Find a root of a function, using a scalar Jacobian approximation.
    diagbroyden(F, xin[, iter, alpha, verbose, ...]) Find a root of a function, using diagonal Broyden Jacobian approximation

  • 相关阅读:
    初步掌握HBase
    基于HBase0.98.13搭建HBase HA分布式集群
    获取当前目录中的文件个数
    MapReduce链接作业
    MapReduce二次排序
    使用map端连接结合分布式缓存机制实现Join算法
    字符串匹配算法-BM
    统计电视机顶盒中无效用户数据,并以压缩格式输出有效用户数据
    字符串匹配算法-KMP
    MapReduce中的Join算法
  • 原文地址:https://www.cnblogs.com/lovephysics/p/scipy.html
Copyright © 2011-2022 走看看