zoukankan      html  css  js  c++  java
  • 符合语言习惯的Python优雅编程技巧

    Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。

    0. 程序必须先让人读懂,然后才能让计算机执行。

    “Programs must be written for people to read, and only incidentally for machines to execute.”

    1. 交换赋值

    ##不推荐
    temp = a
    a = b
    b = a 
     
    ##推荐
    a, b = b, a  #  先生成一个元组(tuple)对象,然后unpack

    2. Unpacking

    ##不推荐
    l = ['David', 'Pythonista', '+1-514-555-1234']
    first_name = l[0]
    last_name = l[1]
    phone_number = l[2] 
     
    ##推荐
    l = ['David', 'Pythonista', '+1-514-555-1234']
    first_name, last_name, phone_number = l
    # Python 3 Only
    first, *middle, last = another_list

    3. 使用操作符in

    ##不推荐
    if fruit == "apple" or fruit == "orange" or fruit == "berry":
        # 多次判断 
     
    ##推荐
    if fruit in ["apple", "orange", "berry"]:
        # 使用 in 更加简洁

    4. 字符串操作

    ##不推荐
    colors = ['red', 'blue', 'green', 'yellow']
     
    result = ''
    for s in colors:
        result += s  #  每次赋值都丢弃以前的字符串对象, 生成一个新对象 
     
    ##推荐
    colors = ['red', 'blue', 'green', 'yellow']
    result = ''.join(colors)  #  没有额外的内存分配

    5. 字典键值列表

    ##不推荐
    for key in my_dict.keys():
        #  my_dict[key] ... 
     
    ##推荐
    for key in my_dict:
        #  my_dict[key] ...
     
    # 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()
    # 生成静态的键值列表。

    6. 字典键值判断

    ##不推荐
    if my_dict.has_key(key):
        # ...do something with d[key] 
     
    ##推荐
    if key in my_dict:
        # ...do something with d[key]

    7. 字典 get 和 setdefault 方法

    ##不推荐
    navs = {}
    for (portfolio, equity, position) in data:
        if portfolio not in navs:
                navs[portfolio] = 0
        navs[portfolio] += position * prices[equity]
    ##推荐
    navs = {}
    for (portfolio, equity, position) in data:
        # 使用 get 方法
        navs[portfolio] = navs.get(portfolio, 0) + position * prices[equity]
        # 或者使用 setdefault 方法
        navs.setdefault(portfolio, 0)
        navs[portfolio] += position * prices[equity]

    8. 判断真伪

    ##不推荐
    if x == True:
        # ....
    if len(items) != 0:
        # ...
    if items != []:
        # ... 
     
    ##推荐
    if x:
        # ....
    if items:
        # ...

    9. 遍历列表以及索引

    ##不推荐
    items = 'zero one two three'.split()
    # method 1
    i = 0
    for item in items:
        print i, item
        i += 1
    # method 2
    for i in range(len(items)):
        print i, items[i]
     
    ##推荐
    items = 'zero one two three'.split()
    for i, item in enumerate(items):
        print i, item

    10. 列表推导

    ##不推荐
    new_list = []
    for item in a_list:
        if condition(item):
            new_list.append(fn(item)) 
     
    ##推荐
    new_list = [fn(item) for item in a_list if condition(item)]

    11. 列表推导-嵌套

    ##不推荐
    for sub_list in nested_list:
        if list_condition(sub_list):
            for item in sub_list:
                if item_condition(item):
                    # do something... 
    ##推荐
    gen = (item for sl in nested_list if list_condition(sl) 
                for item in sl if item_condition(item))
    for item in gen:
        # do something...

    12. 循环嵌套

    ##不推荐
    for x in x_list:
        for y in y_list:
            for z in z_list:
                # do something for x & y 
     
    ##推荐
    from itertools import product
    for x, y, z in product(x_list, y_list, z_list):
        # do something for x, y, z

    13. 尽量使用生成器代替列表, 除非必须用到列表特有的函数

    ##不推荐
    def my_range(n):
        i = 0
        result = []
        while i < n:
            result.append(fn(i))
            i += 1
        return result  #  返回列表
     
    ##推荐
    def my_range(n):
        i = 0
        result = []
        while i < n:
            yield fn(i)  #  使用生成器代替列表
            i += 1

    14. 中间结果尽量使用imap/ifilter代替map/filter

    ##不推荐
    reduce(rf, filter(ff, map(mf, a_list)))
     
    ##推荐
    from itertools import ifilter, imap
    reduce(rf, ifilter(ff, imap(mf, a_list)))
    
    ##lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。

    15. 使用any/all函数

    ##不推荐
    found = False
    for item in a_list:
        if condition(item):
            found = True
            break
    if found:
        # do something if found... 
     
    ##推荐
    if any(condition(item) for item in a_list):
        # do something if found...

    16. 属性(property)

    ##不推荐
    class Clock(object):
        def __init__(self):
            self.__hour = 1
    
        def setHour(self, hour):
            if 25 > hour > 0:
                self.__hour = hour
            else:
                raise BadHourException
    
        def getHour(self):
            return self.__hour
    
    
    ##推荐
    class Clock(object):
        def __init__(self):
            self.__hour = 1
    
        def __setHour(self, hour):
            if 25 > hour > 0:
                self.__hour = hour
            else:
                raise BadHourException
    
        def __getHour(self):
            return self.__hour
    
        hour = property(__getHour, __setHour)

    17. 使用 with 处理文件打开

    ##不推荐
    f = open("some_file.txt")
    try:
        data = f.read()
        # 其他文件操作..
    finally:
        f.close()
     
    ##推荐
    with open("some_file.txt") as f:
        data = f.read()
        # 其他文件操作...

    18. 使用 with 忽视异常(仅限Python 3)

    ##不推荐
    try:
        os.remove("somefile.txt")
    except OSError:
        pass
     
    ##推荐
    from contextlib import ignored  # Python 3 only
     
    with ignored(OSError):
        os.remove("somefile.txt")

    19. 使用 with 处理加锁

    ##不推荐
    import threading
    lock = threading.Lock()
     
    lock.acquire()
    try:
        # 互斥操作...
    finally:
        lock.release()
     
    ##推荐
    import threading
    lock = threading.Lock()
     
    with lock:
        # 互斥操作...

    20. 参考

    1) Idiomatic Python: http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html

    2) PEP 8: Style Guide for Python Code: http://www.python.org/dev/peps/pep-0008/

  • 相关阅读:
    制作企业IT解决方案的几项训练
    Community Server 1.0 Beta安装使用记录
    SharePoint Portal Server定制之区域模板定义
    从售前工作的角度了解SharePoint产品和技术
    活动目录的应用组策略
    企业客户组织结构在售前工作中的作用
    Community Server 1.0 Beta安装使用记录(二)
    2004年钢铁行业信息化现状
    IT解决方案编写小结
    关于软件系统架构设计的一些新思想
  • 原文地址:https://www.cnblogs.com/lovesoo/p/7737554.html
Copyright © 2011-2022 走看看