zoukankan      html  css  js  c++  java
  • ny269 VF

    VF

    时间限制:1000 ms  |  内存限制:65535 KB
    难度:2
     
    描述
    Vasya is the beginning mathematician. He decided to make an important contribution to the science and to become famous all over the world. But how can he do that if the most interesting facts such as Pythagor’s theorem are already proved? Correct! He is to think out something his own, original. So he thought out the Theory of Vasya’s Functions. Vasya’s Functions (VF) are rather simple: the value of the Nth VF in the point S is an amount of integers from 1 to N that have the sum of digits S. You seem to be great programmers, so Vasya gave you a task to find the milliard VF value (i.e. the VF with N = 109) because Vasya himself won’t cope with the task. Can you solve the problem?
     
    输入
    There are multiple test cases.
    Integer S (1 ≤ S ≤ 81).
    输出
    The milliard VF value in the point S.
    样例输入
    1
    样例输出
    10
    
    
    题意讲解:本题目是让你求10亿个数的每个位数的数字之和为s的,共有都少个;
    例如:和为1的有1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000共有十个;
    题意大概就是如此,输入一个S,然后求出和为s,的共有多少个;
    可以用动态规划来做:
    状态转移方程:

    初始条件:dp[0][j]=1   j=1、2…9

    状态转移方程:

    dp[i][j]表示:和为i,不超过j个数相加的符合条件的数有多少个

    dp[i][j]=sum{dp[i-k][j-1]  k=0、1…9}

    代码如下:
           

     1 #include<iostream>
     2 using namespace std;
     3 int a[83][13];
     4 void fun()
     5 {
     6     int sum,n,i,j,k;
     7     for(i=0;i<=11;i++)
     8         a[0][i]=1;
     9     for(i=1;i<=81;i++)
    10         for(j=1;j<=9;j++)
    11         for(k=0;k<10 && i-k>=0;k++)
    12            if(a[i-k][j-1])
    13                a[i][j]+=a[i-k][j-1];
    14 }
    15 int main()
    16 {
    17     int t;
    18     fun();
    19     while(cin>>t)
    20     {
    21         if(t==1)
    22             cout<<10<<endl;
    23         else
    24         cout<<a[t][9]<<endl;
    25     }
    26     return 0;
    27 }

  • 相关阅读:
    WebAPI的文件上传与下载
    cefSharp框架中的C#方法和Web项目中的JS方法相互调用
    C# 引用类型的对象克隆(深拷贝)。
    C++模板特化
    一、JavaScript高级程序设计-----JavaScript简介
    二、C#图解教程第七章--类和继承
    C#IDIspose接口的使用
    CLR via C# 可空值类型
    WPF数据绑定
    计算机网路基础
  • 原文地址:https://www.cnblogs.com/lovychen/p/3361963.html
Copyright © 2011-2022 走看看