zoukankan      html  css  js  c++  java
  • python机器学习之KNN算法

    K邻近算法(kNeighbrClassifier/KNN):原理为 欧几里得距离+最近+投票(权重)+概率

      根据距离的远近进行分类

      欧几里得距离:多维空间中各点之间的距离

       

      缺点:时间复杂度和空间复杂度较大

      意:当训练样本数据少的时候,样本比例一定要相同;训练的数据不能是string

      KNN算法分类电影

     
    import numpy
    
    import pandas   #导入Excel文件
    
    from sklearn.neighbors import KNeighborsClassifier   #机器学习算法库,没有深度学习算法
    
    movie=pandas.read_excel(r"D:Python代码Machine-Learn1-KNNdatamovie.xlsx",sheet_name=0)
    
    movie

     

     
     电影名称武打镜头接吻镜头分类情况
    0 大话西游 36 1 动作片
    1 杀破狼 43 2 动作片
    2 前任3 0 10 爱情片
    3 战狼2 59 1 动作片
    4 泰坦尼克号 1 15 爱情片
    5 新余心愿 2 19 爱情片
    movie=pandas.read_excel(r"D:Python代码Machine-Learn1-KNNdatamovie.xlsx",sheet_name=0)
    x=movie[["武打镜头","接吻镜头"]]    #取出训练数据中的训练数据
    y=movie["分类情况"]                 #取出目标值
    knn=KNeighborsClassifier(n_neighbors=5)
    knn.fit(x,y)       #训练数据
    #预测电影《飞车》武打镜头50,接吻镜头2
    x_text=pandas.DataFrame({"武打镜头":[50,3],"接吻镜头":[2,50]})
    x_text
     武打镜头接吻镜头
    0 50 2
    1 3 50
    get_result=knn.predict(x_text)
    get_proba=knn.predict_proba(x_text)
    print("概率:{}".format(get_proba))
    print("分类结果:{}".format(get_result))

    概率:[[0.6 0.4] [0.4 0.6]] 分类结果:['动作片' '爱情片']

    电影分类运行原理

    s=((movie["武打镜头"]-50)**2+(movie["接吻镜头"]-2)**2)**0.5     #根据knn算法求距离
    index=s.sort_values().index     #先将数据排序然后取出索引
    fljg=movie["分类情况"][index[:5]]
    print("
    {}".format(index),"
    分类:
    {}".format(fljg))

    Int64Index([1, 3, 0, 2, 4, 5], dtype='int64') 分类: 1 动作片 3 动作片 0 动作片 2 爱情片 4 爱情片 Name: 分类情况, dtype: object

    识别梵文

    import numpy
    import os
    import matplotlib.pyplot as plt
    from sklearn.neighbors import KNeighborsClassifier
    img=plt.imread(r"D:Python代码Machine-Learn1-KNNdata手写字母测试与训练梵文识别学习Testcharacter_1_ka1339.png")
    plt.imshow(img,cmap=plt.cm.gray)

    <matplotlib.image.AxesImage at 0x1af31dcc048>
          
    #将读取的图片保存到数组data中
    def img_read(dir_name,data):
        for filename in os.listdir(dir_name):
            img=plt.imread(dir_name+"\"+filename)
            data.append(img)
    def readTain():      #获取训练数据
        data=[]
        dir_path=r"D:Python代码Machine-Learn1-KNNdata手写字母测试与训练梵文识别学习Train"
        for dir_name in os.listdir(dir_path)[36:]:
            dir_name=dir_path+"\"+dir_name
            img_read(dir_name,data)
        return data
    def readTest():     #获取测试数据
        data_test=[]
        dir_test_path=r"D:Python代码Machine-Learn1-KNNdata手写字母测试与训练梵文识别学习Test"
        for dir_name in os.listdir(dir_test_path)[36:]:
            dir_name=dir_test_path+"\"+dir_name
            img_read(dir_name,data_test)
        return data_test
    x=readTain()        #训练数据
    train_x=numpy.array(x)
    train_x_shape={}
    train_x_shape["图片数量"]=test_x.shape[0]
    train_x_shape["宽度"]=str(test_x.shape[1])+"px"
    train_x_shape["高度"]=str(test_x.shape[2])+"px"
    train_x_shape
    {'图片数量': 3000, '宽度': '32px', '高度': '32px'}

    x=readTest()       #测试数据
    ndarray_x=numpy.array(x)
    # 随机抽样测试数据
    index=numpy.random.randint(0,3000,size=1000)
    test_x=ndarray_x[index]
    test_x_shape={}
    test_x_shape["图片数量"]=test_x.shape[0]
    test_x_shape["宽度"]=str(test_x.shape[1])+"px"
    test_x_shape["高度"]=str(test_x.shape[2])+"px"
    test_x_shape
    {'图片数量': 1000, '宽度': '32px', '高度': '32px'}

    # 对应的数字
    num=[0,1,2,3,4,5,6,7,8,9]*300
    test_y=numpy.array(num)
    test_y.sort()
    test_y=test_y[index]
    test_y
    array([0, 9, 8, 0, 3, 3, 0, 6, 6, 2, 1, 0, 2, 9, 0, 5, 5, 1, 7, 3, 1, 9,
           7, 3, 0, 8, 8, 4, 0, 5, 7, 7, 4, 3, 3, 1, 8, 2, 6, 1, 5, 0, 8, 6,
           0, 2, 7, 4, 3, 1, 9, 8, 9, 4, 2, 7, 5, 3, 0, 5, 9, 4, 1, 8, 5, 7,
           6, 5, 0, 9, 9, 1, 4, 9, 9, 5, 2, 6, 4, 6, 2, 2, 2, 6, 7, 7, 4, 3,
           8, 7, 2, 5, 4, 2, 6, 0, 9, 9, 5, 8, 4, 3, 7, 5, 0, 1, 5, 7, 1, 3,
           3, 9, 5, 8, 6, 6, 7, 5, 6, 5, 1, 6, 0, 3, 6, 3, 5, 3, 4, 5, 8, 9,
           7, 2, 3, 9, 5, 6, 6, 0, 3, 2, 3, 5, 8, 8, 8, 2, 3, 0, 7, 9, 6, 0,
           9, 8, 8, 6, 6, 6, 9, 2, 8, 6, 6, 7, 4, 6, 1, 7, 2, 4, 2, 6, 6, 7,
           9, 4, 9, 0, 7, 6, 6, 7, 9, 9, 5, 3, 1, 1, 8, 1, 0, 6, 6, 3, 5, 4,
           7, 3, 3, 5, 0, 3, 1, 9, 2, 9, 7, 0, 6, 1, 2, 6, 4, 2, 3, 0, 4, 3,
           4, 9, 2, 6, 8, 4, 2, 1, 5, 1, 0, 7, 9, 2, 4, 8, 4, 4, 5, 0, 4, 1,
           1, 5, 0, 4, 4, 7, 4, 1, 2, 1, 0, 1, 2, 5, 6, 6, 1, 7, 6, 7, 6, 5,
           0, 2, 4, 8, 7, 7, 9, 8, 1, 7, 9, 8, 5, 0, 2, 9, 7, 8, 2, 0, 5, 4,
           3, 3, 6, 1, 4, 5, 9, 9, 5, 4, 0, 9, 9, 4, 3, 9, 8, 2, 3, 5, 6, 4,
           8, 5, 0, 2, 6, 5, 5, 7, 2, 1, 8, 6, 4, 7, 9, 7, 2, 6, 4, 4, 3, 9,
           5, 4, 4, 0, 5, 1, 5, 8, 9, 6, 5, 3, 2, 3, 4, 1, 6, 0, 0, 8, 1, 3,
           0, 4, 0, 6, 5, 9, 0, 8, 7, 5, 4, 2, 0, 3, 8, 4, 3, 2, 0, 5, 0, 8,
           3, 1, 2, 5, 6, 3, 6, 0, 5, 9, 9, 8, 2, 3, 2, 1, 4, 6, 1, 7, 9, 2,
           1, 5, 4, 1, 3, 3, 9, 5, 1, 4, 0, 1, 7, 2, 4, 3, 4, 0, 0, 0, 3, 5,
           0, 4, 3, 5, 3, 0, 7, 7, 5, 1, 7, 2, 5, 8, 0, 0, 5, 1, 9, 5, 8, 8,
           5, 4, 9, 7, 4, 2, 9, 2, 9, 5, 8, 8, 4, 9, 7, 1, 5, 1, 1, 0, 6, 9,
           1, 6, 3, 3, 7, 1, 6, 0, 7, 8, 7, 3, 6, 7, 9, 1, 1, 1, 8, 8, 8, 9,
           1, 4, 5, 1, 0, 7, 3, 2, 9, 3, 7, 7, 1, 7, 6, 8, 3, 8, 3, 0, 4, 3,
           1, 0, 3, 3, 2, 5, 6, 6, 6, 2, 9, 4, 6, 3, 7, 6, 1, 8, 8, 4, 2, 6,
           3, 7, 8, 0, 6, 4, 4, 9, 9, 2, 3, 5, 9, 2, 1, 4, 3, 9, 5, 8, 9, 5,
           5, 2, 2, 7, 4, 5, 4, 6, 4, 0, 5, 9, 6, 4, 6, 9, 2, 0, 4, 6, 6, 7,
           5, 8, 8, 8, 5, 8, 9, 0, 0, 3, 2, 7, 7, 3, 3, 4, 5, 2, 3, 3, 1, 0,
           9, 1, 1, 8, 1, 3, 9, 8, 7, 1, 6, 9, 1, 7, 8, 4, 9, 5, 6, 4, 2, 3,
           8, 3, 4, 8, 3, 8, 7, 5, 5, 0, 6, 2, 9, 8, 6, 6, 6, 5, 2, 9, 0, 1,
           8, 1, 2, 6, 6, 6, 5, 4, 3, 2, 0, 6, 6, 3, 4, 5, 3, 8, 6, 4, 5, 4,
           7, 6, 5, 4, 5, 8, 9, 4, 5, 5, 2, 5, 1, 5, 6, 4, 4, 1, 4, 1, 9, 8,
           8, 7, 1, 9, 3, 5, 2, 5, 8, 0, 2, 7, 2, 2, 7, 5, 8, 0, 6, 0, 7, 0,
           4, 2, 8, 6, 3, 3, 3, 8, 3, 6, 7, 5, 3, 9, 3, 8, 5, 8, 6, 2, 2, 0,
           1, 9, 2, 6, 2, 8, 6, 0, 7, 0, 3, 4, 9, 4, 1, 2, 2, 3, 5, 5, 7, 9,
           9, 7, 0, 6, 5, 8, 3, 1, 6, 8, 4, 1, 6, 7, 3, 9, 5, 1, 4, 5, 7, 1,
           0, 5, 9, 4, 9, 5, 3, 6, 2, 2, 2, 3, 9, 0, 0, 2, 3, 2, 9, 9, 1, 8,
           4, 7, 1, 1, 2, 4, 3, 4, 9, 7, 4, 7, 8, 6, 0, 4, 8, 7, 0, 6, 0, 5,
           4, 0, 9, 7, 2, 9, 4, 0, 3, 0, 8, 4, 3, 5, 4, 5, 2, 2, 2, 7, 9, 0,
           7, 2, 1, 5, 3, 6, 5, 3, 3, 1, 3, 4, 6, 4, 1, 5, 7, 7, 0, 7, 0, 3,
           1, 2, 2, 3, 6, 1, 8, 3, 9, 5, 9, 7, 7, 8, 4, 3, 0, 1, 5, 1, 7, 5,
           8, 5, 8, 5, 1, 7, 4, 8, 0, 2, 8, 8, 3, 2, 8, 6, 2, 1, 0, 2, 7, 3,
           4, 2, 6, 3, 3, 9, 9, 1, 8, 9, 7, 4, 9, 8, 4, 4, 7, 0, 7, 0, 2, 0,
           0, 2, 8, 7, 3, 6, 6, 2, 4, 2, 0, 4, 9, 0, 4, 3, 7, 5, 7, 7, 2, 6,
           9, 3, 1, 0, 4, 1, 7, 8, 4, 5, 1, 4, 1, 0, 9, 3, 9, 3, 7, 1, 9, 2,
           0, 2, 5, 2, 9, 1, 6, 0, 2, 1, 8, 5, 0, 1, 8, 2, 0, 0, 8, 3, 1, 1,
           9, 5, 9, 7, 5, 6, 5, 7, 1, 1])

    # 对应的数字
    num=[0,1,2,3,4,5,6,7,8,9]*1700
    train_y=numpy.array(num)
    train_y.sort()
    train_y
    array([0, 0, 0, ..., 9, 9, 9])

    # 将三维数据变为二维,fit训练数据不支持二维以上数据
    train_x.reshape(17000,1024)
    test_x.reshape(1000,1024)
    array([[0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.],
           ...,
           [0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)

    # %%time
    # 训练数据
    knn=KNeighborsClassifier(n_neighbors=5)
    knn.fit(train_x.reshape(17000,-1),train_y)

    KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform')

    # %%time
    # 获得结果
    y_result=knn.predict(test_x.reshape(1000,1024))
    print("预测结果:
    {}".format(y_result[500:700]),"
    实际结果:
    {}".format(test_y[500:700]))
    预测结果:
    [6 3 2 8 5 0 2 8 4 3 7 2 7 7 9 1 5 3 4 0 9 5 2 0 5 2 0 0 0 8 0 9 0 4 9 9 4
     1 3 6 0 8 6 4 6 8 2 0 7 3 2 5 6 1 4 7 7 4 5 9 7 9 0 7 0 2 1 8 7 5 4 9 2 4
     7 9 8 2 6 7 3 1 6 9 6 8 7 0 1 0 2 2 0 3 3 0 5 9 5 2 2 8 2 9 7 9 8 3 9 8 9
     0 7 4 2 4 9 0 3 4 3 8 6 2 2 9 5 3 1 8 2 5 1 3 7 2 7 3 2 8 1 3 5 2 1 7 9 4
     4 6 9 2 9 8 9 4 5 2 2 9 1 4 9 1 9 4 1 7 2 1 2 0 3 1 8 3 5 9 0 8 3 6 6 8 1
     6 1 2 0 0 0 2 1 0 5 7 9 2 7 9] 
    实际结果:
    [6 3 2 8 5 0 2 8 4 3 7 2 7 7 9 1 5 3 4 6 9 5 2 0 3 2 0 0 0 8 0 9 0 4 9 9 4
     1 3 6 0 8 6 4 6 8 2 0 7 3 2 5 6 1 4 7 7 4 5 9 7 9 0 7 0 2 1 8 7 5 4 9 2 4
     7 9 8 2 6 7 3 1 6 9 6 8 7 0 1 0 2 2 0 3 3 0 5 9 5 2 2 8 2 9 7 9 8 3 9 8 9
     0 7 4 2 4 9 0 3 4 3 8 6 2 2 9 3 3 1 8 2 5 1 3 7 2 7 3 2 8 1 3 5 2 1 7 9 4
     4 6 9 2 9 8 9 4 5 5 2 9 1 4 9 1 9 4 1 7 2 1 2 0 3 1 8 3 5 9 0 8 3 6 6 8 1
     6 1 2 0 0 0 2 1 0 5 7 9 2 7 9]
    

    # 准确率
    acc=(test_y==y_result).mean()
    print("准确率为:{}".format(acc))

    准确率为:0.984

    提高准确率

    # 准确率与邻居数无关
    knn=KNeighborsClassifier(n_neighbors=10)
    knn.fit(train_x.reshape(17000,-1),train_y)
    # score()方法既可以预测还可以求出准确率
    knn.score(test_x.reshape(1000,1024),test_y)
    0.974

    # 改变权重为邻居数距离越近权重越高,距离越远权重越低;有的时候可以提高,有的时候不能提高
    knn=KNeighborsClassifier(n_neighbors=5,weights="distance")
    knn.fit(train_x.reshape(17000,-1),train_y)
    # score()方法既可以预测还可以求出准确率
    knn.score(test_x.reshape(1000,1024),test_y)
    0.981
    # p=1,使用曼哈顿距离为算法核心
    # n_jobs是进程数,当=-1时,CPU有几个核就开启几个进程,提高运行速度
    knn=KNeighborsClassifier(n_neighbors=5,weights="distance",n_jobs=-1)
    knn.fit(train_x.reshape(17000,-1),train_y)
    # score()方法既可以预测还可以求出准确率
    knn.score(test_x.reshape(1000,1024),test_y)
    0.981
  • 相关阅读:
    cz_health_day07
    cz_health_day06
    mysql索引底层原理
    cz_health_day05
    redis无法获取连接原因分析
    cz_health_day04
    cz_health_day03
    cz_health_day02
    cz_health_day01
    Spring学习
  • 原文地址:https://www.cnblogs.com/lq13035130506/p/12535569.html
Copyright © 2011-2022 走看看