zoukankan      html  css  js  c++  java
  • leetcode 4 寻找两个有序数组的中位数 二分法&INT_MAX

    小知识

    INT_MIN在标准头文件limits.h中定义。

    #define INT_MAX 2147483647
    #define INT_MIN (-INT_MAX - 1)


    题解思路

    其实是类似的二分,优点在于通过添加 '#' ,实现更方便的二分。

    题目:
    给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。

    请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

    你可以假设 nums1 和 nums2 不会同时为空。

    示例 1:

    nums1 = [1, 3]
    nums2 = [2]
    则中位数是 2.0
    示例 2:

    nums1 = [1, 2]
    nums2 = [3, 4]
    则中位数是 (2 + 3)/2 = 2.5

    算法:
    为了解决这个问题,我们需要理解 “中位数的作用是什么”。在统计中,中位数被用来:

    将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。

    这其中又分为偶数组和奇数组:

    奇数组: [2 3 5] 对应的中位数为3

    偶数组: [1 4 7 9] 对应的中位数为 (4 + 7) /2 = 5.5

    先解释下“割”
    我们通过切一刀,能够把有序数组分成左右两个部分,切的那一刀就被称为割(Cut),割(Cut)的左右会有两个元素,分别是左边最大值和右边最小值。

    我们定义LMax= Max(LeftPart),RMin = Min(RightPart)。

    割可以割在两个数中间,也可以割在1个数上,如果割在一个数上,那么这个数即属于左边,也属于右边

    奇数组: [2 3 5] 对应的中位数为3,假定割(Cut)在3上,我们可以把3分为2个: [2 (3/3) 5]

    因此LMax=3, RMin=3

    偶数组: [1 4 7 9] 对应的中位数为 (4 + 7) /2 = 5.5,假定割(Cut)在4和7之间: [1 (4/7) 9]

    因此LMax=4, RMin=7

    割和第k个元素
    一个数组
    对于一个有序数组,对于数组A,如果在k的位置割(Cut)一下(不是割(Cut)在两数中间),那么 LMax = RMin = A[k],

    两个数组
    也就是我们题目的状态,我们要求得两个数组合并成一个有序数组时,第k位的元素

    我们设:
    Ci为第i个数组的割。

    LMaxi为第i个数组割后的左元素.

    RMini为第i个数组割后的右元素。

     

    首先,LMax1<=RMin1,LMax2<=RMin2 这是肯定的,因为数组是有序的,左边肯定小于右边!,而如果割(Cut)在某个数上,则左右相等。

    其次,如果我们让LMax1<=RMin2,LMax2<=RMin1 呢

     

    那么如果左半边全小于右半边,如果左边的元素个数相加刚好等于k, 那么第k个元素就是Max(LMax1, LMax2),这个比较好理解的,因为Max(LMax1, LMax2)肯定是左边k个元素的最大值,因为合并后的数组是有序,第k个元素肯定前面k个元素中最大的那个。

    那么如果 LMax1>RMin2,说明数组1的左边元素太大(多),我们把C1减小,C2=k-C1也就相应的增大。LMax2>RMin1同理,把C2减小,C1=k-C2也就相应的增大。

    假设k=3

    对于

    [2 3 5]

    [1 4 7 9]
    设C1 = 1, 那么C2 = k - C1 = 2

    [2 / 3 5]

    [1 4 / 7 9]

    这时LMax1 =2, RMin1 = 3, LMax2=4, RMin2=7,

    从而有LMax2 > RMin1,依据前面的推论,我们要将C1增大,所以我们让C1 = 2,如下:

    [2 3 /5]

    [1 / 4 7 9]

    这时LMax1 =3, RMin1 = 5, LMax2=1, RMin2=4, 满足 LMax1 < RMin2 且 LMax2 < RMin1 , 所以第3个元素为Max(LMax1,LMax2) = 3

    两个数组的最大问题是,它们合并后,m+n总数可能为奇, 也可能为偶,所以我们得想法让m+n总是为偶数

    通过虚拟加入‘#’,我们让m转换成2m+1 ,n转换成2n+1, 两数之和就变成了2m+2n+2,恒为偶数。

    注意是虚拟加,其实根本没这一步,通过下面的转换,我们可以保证虚拟加后每个元素跟原来的元素一一对应

     

    这么虚拟加后,每个位置可以通过/2得到原来元素的位置:

    比如 2,原来在0位,现在是1位,1/2=0

    比如 3,原来在1位,现在是3位,3/2=1

    比如 5,原来在2位,现在是5位,5/2=2

    比如 9,原来在3位,现在是7位,7/2=3

    而对于割(Cut),如果割在‘#’上等于割在2个元素之间,割在数字上等于把数字划到2个部分,总是有以下成立:

    LMaxi = (Ci-1)/2 位置上的元素
    RMini = Ci/2 位置上的元素

    例如:

    割在3上,C = 3,LMax=a[(3-1)/2]=A[1],RMin=a[3/2] =A[1],刚好都是3的位置!

    割在4/7之间‘#’,C = 4,LMax=A[(4-1)/2]=A[1]=4 ,RMin=A[4/2]=A[2]=7

    剩下的事情就好办了,把2个数组看做一个虚拟的数组A,A有2m+2n+2个元素,割在m+n+1处,所以我们只需找到m+n+1位置的元素和m+n+2位置的元素就行了。(如3+4,16,割在8)

    左边:A[m+n+1] = Max(LMax1,LMax2)

    右边:A[m+n+2] = Min(RMin1,RMin2)

    ==>Mid = (A[m+n+1]+A[m+n+2])/2 = (Max(LMax1,LMax2) + Min(RMin1,RMin2) )/2

    最快的割(Cut)是使用二分法,

    有2个数组,我们对哪个做二分呢?
    根据之前的分析,我们知道了,只要C1或C2确定,另外一个也就确定了。这里,为了效率,我们肯定是选长度较短的做二分,假设为C1。

    LMax1>RMin2,把C1减小,C2增大。—> C1向左二分

    LMax2>RMin1,把C1增大,C2减小。—> C1向右二分

    如果C1或C2已经到头了怎么办?

    这种情况出现在:如果有个数组完全小于或大于中值。假定n<m, 可能有4种情况:

    C1 = 0 —— 数组1整体都在右边了,所以都比中值大,中值在数组2中,简单的说就是数组1割后的左边是空了,所以我们可以假定LMax1 = INT_MIN

    C1 =2n —— 数组1整体都在左边了,所以都比中值小,中值在数组2中 ,简单的说就是数组1割后的右边是空了,所以我们可以假定RMin1= INT_MAX,来保证LMax2<RMin1恒成立

    C2 = 0 —— 数组2整体在右边了,所以都比中值大,中值在数组1中 ,简单的说就是数组2割后的左边是空了,所以我们可以假定LMax2 = INT_MIN

    C2 = 2m —— 数组2整体在左边了,所以都比中值小,中值在数组1中, 简单的说就是数组2割后的右边是空了,为了让LMax1 < RMin2 恒成立,我们可以假定RMin2 = INT_MAX

    #include <stdio.h>
    #include <vector>
    using namespace std;
    
    #define max(a,b) (((a) > (b)) ? (a) : (b))
    #define min(a,b) (((a) < (b)) ? (a) : (b))
    
    class Solution {
    public:
        double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
            int n = nums1.size();
            int m = nums2.size();
    
            if (n > m)  //保证数组1一定最短
            {
                return findMedianSortedArrays(nums2, nums1);
            }
    
            // Ci 为第i个数组的割,比如C1为2时表示第1个数组只有2个元素。LMaxi为第i个数组割后的左元素。RMini为第i个数组割后的右元素。
            int LMax1, LMax2, RMin1, RMin2, c1, c2, lo = 0, hi = 2 * n;  //我们目前是虚拟加了'#'所以数组1是2*n长度,下标0-2n,(2N+1)
    
            while (lo <= hi)   //二分
            {
                c1 = (lo + hi) / 2;  //c1是二分的结果 在2n+1内部割一次,左边
                c2 = m + n - c1;  //2m+1内部割,割的数量为m+n+1-c1   //一共割m+n+1,(由于下标0-2m+2+1,故m+n-c1)不是在整体中2m+2m+2割,分别在两个2m+2和2n+2中割,加起来m+n+1
    //想象两个数组割成四部分,前两部分合并为总数组的第一部分
                LMax1 = (c1 == 0) ? INT_MIN : nums1[(c1 - 1) / 2];
                RMin1 = (c1 == 2 * n) ? INT_MAX : nums1[c1 / 2];
                LMax2 = (c2 == 0) ? INT_MIN : nums2[(c2 - 1) / 2];
                RMin2 = (c2 == 2 * m) ? INT_MAX : nums2[c2 / 2];
    
                if (LMax1 > RMin2)
                    hi = c1 - 1;
                else if (LMax2 > RMin1)
                    lo = c1 + 1;
                else
                    break;
            }
            return (max(LMax1, LMax2) + min(RMin1, RMin2)) / 2.0;
        }
    };
    
    
    int main(int argc, char *argv[])
    {
        vector<int> nums1 = { 2,3, 5 };
        vector<int> nums2 = { 1,4,7, 9 };
        
        Solution solution;
        double ret = solution.findMedianSortedArrays(nums1, nums2);
        return 0;
    }

    作者:bian-bian-xiong
    链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/4-xun-zhao-liang-ge-you-xu-shu-zu-de-zhong-wei-shu/

    my思路

    /* 差不多的二分,但是由于没有加#处理导致细节处理麻烦。。。*/

    这道题似乎限制了数组n,m均为int数组。

    但是又没提,感觉怪怪的

    假定两个有序数组长度分别为M,n(有序很重要)

    题目要求时间复杂度为 O(log(m + n)),那么显然是m+n然后二分。关键在于如何二分。

    想象两数组合并,最后的中位数必然左右各(M+N)/2个数。(先不考虑奇偶)

    令较长的数组list1在前(这样中位数mid必然落在此数组数据范围内,否则mid<list1min或mid>list1max,左右两边数字数目不均等,不符合中位数定义。或者两数组恰好元素数量相等,中位数恰好在list1max与list2min之间)

    设两数组为list1,list2,长度为m,n

    将两个数组以下标cut1,cut2分别切开,左右分别为LMax1,RMin1,LMAX2, RMin2

    LMAX1为list1[list1cut-1],RMIN1为list1[list1cut],LMAX2为list2[list2cut-1],RMIN2为list2[list2cut]

    ,(比如list[1,2,3,4],list1cut=2,LMAX1=2,RMIN1=3)

    显然LMAX1<=RMIN1,LMAX2<=RMIN2

    当满足LMAX1<=RMAX2,LMAX2<=RMIN1时,可求得中位数mid =(max(LMAX1,LMAX2)+min(RMIN1,RMIN2))/2

    若LMAX1>RMAX2,  r = list1cut-1

    若LMAX2>RMAX1,  l = list1cut+1

    二分查找初始条件为l=0,r=M+N,

    list1cut=(l+r)/2,

    list2cut=(m+n)/2-list1cut;

    这样list1贡献list1cut个数,lsit2贡献list2cut个数,相加共(m+n)/2个数,刚好为中位数左边的数。

    现在考虑奇偶。

    当m+n为偶数,(M+N)/2为int,按照如上所述处理即可。

    其中LMAX1为list1[list1cut-1],RMIN1为list1[list1cut],LMAX2为list2[list2cut-1],RMIN2为list2[list2cut]

    当m+n为奇数,中位数其实必然是m数组或n数组中某个数。二分时令list1和list2选出来的数个数加起来为(m+n+1)/2,当满足LMAX1<=RMIN2,LMAX2<=RMIN1时,mid=min(RMIN1,RMIN2)

    初始化 r 为m+n

    list1cut=(l+r)/2,

    list2cut=(m+n)/2-list1cut;

    然后上述思路的细节处理在于边界处理,比如listcut=0,或m,n这种情况时。处理方法为利用INT_MAX,MIN当不存在时规定。

    然后跑了一次错了

    例子为

    []
    [1]

    这才发现读题读错了。。。是不同时为空。加一个处理即可。

  • 相关阅读:
    JS中const的使用
    JS的作用域,闭包的理解
    python中函数的默认参数是空数组
    asp.net 导出 Excel
    asp.net 导出 Excel 身份证格式显示格式问题
    HTML5
    JQuery中checkbox选择器
    JQuery中DOM操作(一)
    PL/SQL 创建用户及权限操作
    PL/SQL 表约束
  • 原文地址:https://www.cnblogs.com/lqerio/p/11710502.html
Copyright © 2011-2022 走看看