zoukankan      html  css  js  c++  java
  • 一些题目(2)

    奶牛选举

    搜索

    题意:在 5*5 的矩阵中找出规模为 7 的四连通块的个数。

    初步解法:枚举第一个被取的格子是哪个。对于每个格子,若其上下左右四个格子已经有被取过的格子,就枚举其取或不取;否则不取当前格子。但是很明显是错的,因为在初始格子的周围添加一个后,能够取的格子就会变多,但是由于是顺序枚举,就会漏掉前面的可以取的格子。

    正解:直接把上面的方法中「判断其四周是否有被取过的格子」这一步删掉。

    更好的解法是把 7 拆成 4+3,也就是先深搜出一条长度为 4 的四连通块,注意是一条,也就是直接用深搜每次单方向扩展。然后在这个规模为 4 的连通块周围添加上 3 个格子即可。

     

    约瑟夫问题

    线段树

    分析:我们知道约瑟夫问题的瓶颈在于找到下一个出圈的人的编号。如果用标记数组或链表,即使加了取模优化也仍然不够理想,依然是线性的复杂度。所以我们要用线段树来实现 O(logn) 的查找。

    线段树一般用于统计,在这个问题中我们可以用线段树统计一个区间内的「剩余人数」。

    那么,当我们要查找当前剩余的人中的第 k 个人时,就从根节点开始不断往下找。如果当前结点的左子树剩余人数大于等于 k,就在左子树中查找;否则在右子树中查找。找到一个人后删去,维护区间的剩余人数。

     

    最舒适路线

    枚举+并查集

    题意:找出一条最大边与最小边比值最小的路径。

    初步解法:枚举最大边是哪条,二分枚举最小边是哪条,用并查集判断连通性。

    正解:先将边排序,枚举最小边是哪条,然后从最小边开始不断往图中依次加边,直到两点连通为止。这里运用了一点贪心的思想:确定了最小边之后,往后不断添加边直到两点连通,此时不必再加边,所以确定最小边之后,就已经确定了此时的最优解(如果有解的话),最大边就不用再枚举了,可以判断出此时最大边的最小值,即得到此时的最优情况。

  • 相关阅读:
    timequest 中set input delay set output delay 的使用
    ALTERA的FPGA命名规则
    modelsim仿真常用系统函数
    altium布局布线原则
    altium常用快捷键记录
    第五篇:使用无缓冲IO函数读写文件
    第四篇:“ 不确定 "限制值的使用
    第三篇:POSIX标准中的 “ 限制 ”
    第二篇:库函数和系统调用的区别
    hdu 4284(状压dp)
  • 原文地址:https://www.cnblogs.com/lsdsjy/p/3936170.html
Copyright © 2011-2022 走看看