Class,Method,Field
间接调用引入方法。
java.lang.invoke包,方法句柄,反射的现代化,去掉套路化代码。
【MethodHandler】
保存类信息的永久代内存:方法区。
方法句柄适用于任何方法签名,而Callable接口只用于无参方法。
【MethodType】方法签名类型,不可变对象
用普通对象表示不同方法签名。解决接口泛滥。
MethodType.methodType (RetType.class, Arg0Type.class, Arg1Type.class, ...... );
【查找方法句柄】
MethodHandle mh;
MethodType mt = MethodType.methodType(String.class);
MethodHandles.Lookup lk = MethodHandles.lookup();
try{
mh = lk.findVirtual(getClass(), "toString", mt);
}
——反射机制:Class.newInstance。(见:20141029 - java.lang.Class)
http://ifeve.com/java-reflection-11-dynamic-proxies/
利 用Java反射机制你可以在运行期动态的创建接口的实现。java.lang.reflect.Proxy类就可以实现这一功能。这个类的名字(译者 注:Proxy意思为代理)就是为什么把动态接口实现叫做动态代理。动态的代理的用途十分广泛,比如数据库连接和事物管理(transaction management)还有单元测试时用到的动态mock对象以及AOP中的方法拦截功能等等都使用到了动态代理。
Reflection是Java 程序开发语言的特征之一,它允许运行中的 Java 程序对自身进行检查,或者说"自审",并能直接操作程序的内部属性。例如,使用它能获得 Java 类中各成员的名称并显示出来。 Java 的这一能力在实际应用中也许用得不是很多,但是在其它的程序设计语言中根本就不存在这一特性。例如,Pascal、C 或者 C++ 中就没有办法在程序中获得函数定义相关的信息。
JavaBean 是 reflection 的实际应用之一,它能让一些工具可视化地操作软件组件。这些工具通过 reflection 动态的载入并取得 Java 组件(类) 的属性。
import java.lang.reflect.*;
public class DumpMethods {
public static void main(String args[]) {
try {
Class c = Class.forName("java.util.Stack");
Method m[] = c.getDeclaredMethods();
for (int i = 0; i < m.length; i++)
System.out.println(m[i].toString());
}
catch (Throwable e){
System.err.println(e);
}
}
}
//Output:
public synchronized java.lang.Object java.util.Stack.pop()
public java.lang.Object java.util.Stack.push(java.lang.Object)
public boolean java.util.Stack.empty()
public synchronized java.lang.Object java.util.Stack.peek()
public synchronized int java.util.Stack.search(java.lang.Object)
这样就列出了java.util.Stack 类的各方法名以及它们的限制符和返回类型。
这个程序使用 Class.forName 载入指定的类,然后调用 getDeclaredMethods 来获取这个类中定义了的方法列表。
java.lang.reflect.Methods 是用来描述某个类中单个方法的一个类。
|
用于 reflection 的类,如 Method,可以在 java.lang.relfect 包中找到。使用这些类的时候必须要遵循三个步骤:
第一步是获得你想操作的类的 java.lang.Class 对象。在运行中的 Java 程序中,用 java.lang.Class 类来描述类和接口等。
下面就是获得一个 Class 对象的方法之一:
Class c = Class.forName("java.lang.String");
这条语句得到一个 String 类的类对象。还有另一种方法,如下面的语句:
Class c = int.class; 或者 Class c = Integer.TYPE;
它们可获得基本类型的类信息。其中后一种方法中访问的是基本类型的封装类 (如 Integer) 中预先定义好的 TYPE 字段。
第二步是调用诸如 getDeclaredMethods 的方法,以取得该类中定义的所有方法的列表。
一旦取得这个信息,就可以进行第三步了——使用 reflection API 来操作这些信息,如下面这段代码:
Class c = Class.forName("java.lang.String");
Method m[] = c.getDeclaredMethods();
System.out.println(m[0].toString());
【Class.isInstance 方法可以用于模拟 instanceof 操作符】
class S {
}
public class IsInstance {
public static void main(String args[]) {
try {
Class cls = Class.forName("S");
boolean b1 = cls.isInstance(new Integer(37));
System.out.println(b1);
boolean b2 = cls.isInstance(new S());
System.out.println(b2);
}
catch (Throwable e) {
System.err.println(e);
}
}
}
在这个例子中创建了一个S 类的 Class 对象,然后检查一些对象是否是S的实例。Integer(37) 不是,但 new S()是。
|
【找出类的方法】
找出一个类中定义了些什么方法,这是一个非常有价值也非常基础的 reflection 用法。
import java.lang.reflect.*;
public class Method1 {
private int f1(Object p, int x) throws NullPointerException {
if (p == null)
throw new NullPointerException();
return x;
}
public static void main(String args[]) {
try {
Class cls = Class.forName("Method1");
Method methlist[] = cls.getDeclaredMethods();
for (int i = 0; i < methlist.length; i++) {
Method m = methlist[i];
System.out.println("name = " + m.getName());
System.out.println("decl class = " + m.getDeclaringClass());
Class pvec[] = m.getParameterTypes();
for (int j = 0; j < pvec.length; j++)
System.out.println("param #" + j + " " + pvec[j]);
Class evec[] = m.getExceptionTypes();
for (int j = 0; j < evec.length; j++)
System.out.println("exc #" + j + " " + evec[j]);
System.out.println("return type = " + m.getReturnType());
System.out.println("-----");
}
}
catch (Throwable e) {
System.err.println(e);
}
}
}
//输出
name = f1
decl class = class method1
param #0 class java.lang.Object
param #1 int
exc #0 class java.lang.NullPointerException
return type = int
-----
name = main
decl class = class method1
param #0 class [Ljava.lang.String;
return type = void
|
这个程序首先取得 method1 类的描述,然后调用 getDeclaredMethods 来获取一系列的 Method 对象,它们分别描述了定义在类中的每一个方法,包括 public 方法、protected 方法、package 方法和 private 方法等。如果你在程序中使用 getMethods 来代替 getDeclaredMethods,你还能获得继承来的各个方法的信息。
取得了 Method 对象列表之后,要显示这些方法的参数类型、异常类型和返回值类型等就不难了。这些类型是基本类型还是类类型,都可以由描述类的对象按顺序给出。
【获取构造器信息】
获取类构造器的用法与上述获取方法的用法类似。
【获取类的字段(域)】
找出一个类中定义了哪些数据字段也是可能的,下面的代码就在干这个事情:
import java.lang.reflect.*;
public class Field1 {
private double d;
public static final int i = 37;
String s = "testing";
public static void main(String args[]) {
try {
Class cls = Class.forName("Field1");
Field fieldlist[] = cls.getDeclaredFields();
for (int i = 0; i < fieldlist.length; i++) {
Field fld = fieldlist[i];
System.out.println("name = " + fld.getName());
System.out.println("decl class = " + fld.getDeclaringClass());
System.out.println("type = " + fld.getType());
int mod = fld.getModifiers();
System.out.println("modifiers = " + Modifier.toString(mod));
System.out.println("-----");
}
}
catch (Throwable e) {
System.err.println(e);
}
}
}
这 个例子和前面那个例子非常相似。例中使用了一个新东西 Modifier,它也是一个 reflection 类,用来【描述字段成员的修饰语】,如“private int”。这些修饰语自身由整数描述,而且使用 Modifier.toString 来返回以“官方”顺序排列的字符串描述 (如“static”在“final”之前)。这个程序的输出是:
name = d
decl class = class Field1
type = double
modifiers = private
-----
name = i
decl class = class Field1
type = int
modifiers = public static final
-----
name = s
decl class = class Field1
type = class java.lang.String
modifiers =
-----
和获取方法的情况一下,获取字段的时候也可以只取得在当前类中申明了的字段信息 (getDeclaredFields),或者也可以取得父类中定义的字段 (getFields) 。
|
【根据方法的名称来执行方法】
import java.lang.reflect.*;
public class Method2 {
public int add(int a, int b) {
return a + b;
}
public static void main(String args[]) {
try {
Class cls = Class.forName("Method2");
Class partypes[] = new Class[2];
partypes[0] = Integer.TYPE;
partypes[1] = Integer.TYPE;
Method meth = cls.getMethod("add", partypes);
Method2 methobj = new Method2();
Object arglist[] = new Object[2];
arglist[0] = new Integer(37);
arglist[1] = new Integer(47);
Object retobj = meth.invoke(methobj, arglist);
Integer retval = (Integer) retobj;
System.out.println(retval.intValue());
}
catch (Throwable e) {
System.err.println(e);
}
}
}
假如一个程序在执行的某处的时候才知道需要执行某个方法,这个方法的名称是在程序的运行过程中指定的 (例如,JavaBean 开发环境中就会做这样的事),那么上面的程序演示了如何做到。
上 例中,getMethod用于查找一个具有两个整型参数且名为 add 的方法。找到该方法并创建了相应的Method对象之后,在正确的对象实例中执行它。执行该方法的时候,需要提供一个参数列表,这在上例中是分别包装了整 数 37 和 47 的两个 Integer 对象。执行方法的返回的同样是一个 Integer 对象,它封装了返回值 84。
|
【创建新的对象】
对于构造器,则不能像执行方法那样进行,因为执行一个构造器就意味着创建了一个新的对象 (准确的说,创建一个对象的过程包括分配内存和构造对象)。所以,与上例最相似的例子如下:
import java.lang.reflect.*;
public class Constructor2 {
public Constructor2() {
}
public Constructor2(int a, int b) {
System.out.println("a = " + a + " b = " + b);
}
public static void main(String args[]) {
try {
Class cls = Class.forName("Constructor2");
Class partypes[] = new Class[2];
partypes[0] = Integer.TYPE;
partypes[1] = Integer.TYPE;
Constructor ct = cls.getConstructor(partypes);
Object arglist[] = new Object[2];
arglist[0] = new Integer(37);
arglist[1] = new Integer(47);
Object retobj = ct.newInstance(arglist);
}
catch (Throwable e) {
System.err.println(e);
}
}
}
根据指定的参数类型找到相应的构造函数并执行它,以创建一个新的对象实例。使用这种方法可以在程序运行时动态地创建对象,而不是在编译的时候创建对象,这一点非常有价值。
|
【改变字段(域)的值】
reflection 的还有一个用处就是改变对象数据字段的值。reflection 可以从正在运行的程序中根据名称找到对象的字段并改变它,下面的例子可以说明这一点:
import java.lang.reflect.*;
public class Field2 {
public double d;
public static void main(String args[]) {
try {
Class cls = Class.forName("Field2");
Field fld = cls.getField("d");
Field2 f2obj = new Field2();
System.out.println("d = " + f2obj.d);
fld.setDouble(f2obj, 12.34);
System.out.println("d = " + f2obj.d);
}
catch (Throwable e) {
System.err.println(e);
}
}
}
这个例子中,字段 d 的值被变为了 12.34。
|
【使用数组】
本文介绍的 reflection 的最后一种用法是创建的操作数组。数组在 Java 语言中是一种特殊的类类型,一个数组的引用可以赋给 Object 引用。观察下面的例子看看数组是怎么工作的:
import java.lang.reflect.*;
public class Array1 {
public static void main(String args[]) {
try {
Class cls = Class.forName("java.lang.String");
Object arr = Array.newInstance(cls, 10);
Array.set(arr, 5, "this is a test");
String s = (String) Array.get(arr, 5);
System.out.println(s);
}
catch (Throwable e) {
System.err.println(e);
}
}
}
例中创建了 10 个单位长度的 String 数组,为第 5 个位置的字符串赋了值,最后将这个字符串从数组中取得并打印了出来。
下面这段代码提供了一个更复杂的例子:
import java.lang.reflect.*;
public class Array2 {
public static void main(String args[]) {
int dims[] = new int[]{5, 10, 15};
Object arr = Array.newInstance(Integer.TYPE, dims);
Object arrobj = Array.get(arr, 3);
Class cls = arrobj.getClass().getComponentType();
System.out.println(cls);
arrobj = Array.get(arrobj, 5);
Array.setInt(arrobj, 10, 37);
int arrcast[][][] = (int[][][]) arr;
System.out.println(arrcast[3][5][10]);
}
}
例 中创建了一个 5 x 10 x 15 的整型数组,并为处于 [3][5][10] 的元素赋了值为 37。注意,多维数组实际上就是数组的数组,例如,第一个 Array.get 之后,arrobj 是一个 10 x 15 的数组。进而取得其中的一个元素,即长度为 15 的数组,并使用 Array.setInt 为它的第 10 个元素赋值。
注意创建数组时的类型是动态的,在编译时并不知道其类型。
|