zoukankan      html  css  js  c++  java
  • NCP以及RL衍生代码分析

    Paper:https://www.cnblogs.com/lucifer1997/p/14587182.html(Nature Machine Intelligence 2020)

    NCP:https://github.com/mlech26l/keras-ncp/(TensorFlow/PyTorch)

    NCP-RL:https://github.com/loldabigboi/cs-760-proj/(CartPole/HalfCheetah)

    一、NCP (keras-ncp)

    1、keras-ncp/wirings/wirings.py:

    class NCP(Wiring):
        def __init__(
            self,
            inter_neurons,
            command_neurons,
            motor_neurons,
            sensory_fanout,
            inter_fanout,
            recurrent_command_synapses,
            motor_fanin,
            seed=22222,
        ):
    
            super(NCP, self).__init__(inter_neurons + command_neurons + motor_neurons)
            self.set_output_dim(motor_neurons)
            self._rng = np.random.RandomState(seed)
            self._num_inter_neurons = inter_neurons
            self._num_command_neurons = command_neurons
            self._num_motor_neurons = motor_neurons
            self._sensory_fanout = sensory_fanout
            self._inter_fanout = inter_fanout
            self._recurrent_command_synapses = recurrent_command_synapses
            self._motor_fanin = motor_fanin
    
            # Neuron IDs: [0..motor ... command ... inter]
            self._motor_neurons = list(range(0, self._num_motor_neurons))
            self._command_neurons = list(
                range(
                    self._num_motor_neurons,
                    self._num_motor_neurons + self._num_command_neurons,
                )
            )
            self._inter_neurons = list(
                range(
                    self._num_motor_neurons + self._num_command_neurons,
                    self._num_motor_neurons
                    + self._num_command_neurons
                    + self._num_inter_neurons,
                )
            )
    
            if self._motor_fanin > self._num_command_neurons:
                raise ValueError(
                    "Error: Motor fanin parameter is {} but there are only {} command neurons".format(
                        self._motor_fanin, self._num_command_neurons
                    )
                )
            if self._sensory_fanout > self._num_inter_neurons:
                raise ValueError(
                    "Error: Sensory fanout parameter is {} but there are only {} inter neurons".format(
                        self._sensory_fanout, self._num_inter_neurons
                    )
                )
            if self._inter_fanout > self._num_command_neurons:
                raise ValueError(
                    "Error:: Inter fanout parameter is {} but there are only {} command neurons".format(
                        self._inter_fanout, self._num_command_neurons
                    )
                )
    
        def get_type_of_neuron(self, neuron_id):
            if neuron_id < self._num_motor_neurons:
                return "motor"
            if neuron_id < self._num_motor_neurons + self._num_command_neurons:
                return "command"
            return "inter"
    
        def _build_sensory_to_inter_layer(self):
            unreachable_inter_neurons = [l for l in self._inter_neurons]
            # Randomly connects each sensory neuron to exactly _sensory_fanout number of interneurons
            for src in self._sensory_neurons:
                for dest in self._rng.choice(
                    self._inter_neurons, size=self._sensory_fanout, replace=False
                ):
                    if dest in unreachable_inter_neurons:
                        unreachable_inter_neurons.remove(dest)
                    polarity = self._rng.choice([-1, 1])
                    self.add_sensory_synapse(src, dest, polarity)
    
            # If it happens that some interneurons are not connected, connect them now
            mean_inter_neuron_fanin = int(
                self._num_sensory_neurons * self._sensory_fanout / self._num_inter_neurons
            )
            # Connect "forgotten" inter neuron by at least 1 and at most all sensory neuron
            mean_inter_neuron_fanin = np.clip(
                mean_inter_neuron_fanin, 1, self._num_sensory_neurons
            )
            for dest in unreachable_inter_neurons:
                for src in self._rng.choice(
                    self._sensory_neurons, size=mean_inter_neuron_fanin, replace=False
                ):
                    polarity = self._rng.choice([-1, 1])
                    self.add_sensory_synapse(src, dest, polarity)
    
        def _build_inter_to_command_layer(self):
            # Randomly connect interneurons to command neurons
            unreachable_command_neurons = [l for l in self._command_neurons]
            for src in self._inter_neurons:
                for dest in self._rng.choice(
                    self._command_neurons, size=self._inter_fanout, replace=False
                ):
                    if dest in unreachable_command_neurons:
                        unreachable_command_neurons.remove(dest)
                    polarity = self._rng.choice([-1, 1])
                    self.add_synapse(src, dest, polarity)
    
            # If it happens that some command neurons are not connected, connect them now
            mean_command_neurons_fanin = int(
                self._num_inter_neurons * self._inter_fanout / self._num_command_neurons
            )
            # Connect "forgotten" command neuron by at least 1 and at most all inter neuron
            mean_command_neurons_fanin = np.clip(
                mean_command_neurons_fanin, 1, self._num_command_neurons
            )
            for dest in unreachable_command_neurons:
                for src in self._rng.choice(
                    self._inter_neurons, size=mean_command_neurons_fanin, replace=False
                ):
                    polarity = self._rng.choice([-1, 1])
                    self.add_synapse(src, dest, polarity)
    
        def _build_recurrent_command_layer(self):
            # Add recurrency in command neurons
            for i in range(self._recurrent_command_synapses):
                src = self._rng.choice(self._command_neurons)
                dest = self._rng.choice(self._command_neurons)
                polarity = self._rng.choice([-1, 1])
                self.add_synapse(src, dest, polarity)
    
        def _build_command__to_motor_layer(self):
            # Randomly connect command neurons to motor neurons
            unreachable_command_neurons = [l for l in self._command_neurons]
            for dest in self._motor_neurons:
                for src in self._rng.choice(
                    self._command_neurons, size=self._motor_fanin, replace=False
                ):
                    if src in unreachable_command_neurons:
                        unreachable_command_neurons.remove(src)
                    polarity = self._rng.choice([-1, 1])
                    self.add_synapse(src, dest, polarity)
    
            # If it happens that some commandneurons are not connected, connect them now
            mean_command_fanout = int(
                self._num_motor_neurons * self._motor_fanin / self._num_command_neurons
            )
            # Connect "forgotten" command neuron to at least 1 and at most all motor neuron
            mean_command_fanout = np.clip(mean_command_fanout, 1, self._num_motor_neurons)
            for src in unreachable_command_neurons:
                for dest in self._rng.choice(
                    self._motor_neurons, size=mean_command_fanout, replace=False
                ):
                    polarity = self._rng.choice([-1, 1])
                    self.add_synapse(src, dest, polarity)
    
        def build(self, input_shape):
            super().build(input_shape)
            self._num_sensory_neurons = self.input_dim
            self._sensory_neurons = list(range(0, self._num_sensory_neurons))
    
            self._build_sensory_to_inter_layer()
            self._build_inter_to_command_layer()
            self._build_recurrent_command_layer()
            self._build_command__to_motor_layer()
    View Code
    class NCP(Wiring):
        def __init__(
            self,
            inter_neurons,
            command_neurons,
            motor_neurons,
            sensory_fanout,
            inter_fanout,
            recurrent_command_synapses,
            motor_fanin,
            seed=22222,
        )

    2、examples/stacking_ncp.py:

    wiring = kncp.wirings.NCP(
        inter_neurons=12,  # Number of inter neurons
        command_neurons=8,  # Number of command neurons
        motor_neurons=1,  # Number of motor neurons
        sensory_fanout=4,  # How many outgoing synapses has each sensory neuron
        inter_fanout=4,  # How many outgoing synapses has each inter neuron
        recurrent_command_synapses=4,  # Now many recurrent synapses are in the command neuron layer
        motor_fanin=6,  # How many incomming syanpses has each motor neuron
    )
    rnn_cell = LTCCell(wiring)

    二、NCP-RL (cs-760-proj)

    1、cart-pole/main.py:

    gym游戏环境:observation_space=4,action_space=2;

    强化学习算法:DQN with target network,Motor神经元输出不同运动的Q值;

  • 相关阅读:
    pytest学习Pytest基础
    Docker基础认识
    DNS 域名解析协议
    Python从数据库取数据到Excel
    PO设计模式
    unittest多种加载执行用例方法
    Dev XtraGridView 添加行时滚动条(界面)随焦点滚动
    阅读器关闭时READ的尝试无效 真正原因 测试通过解决办法
    转帖 用SQL语句 查看 某一存储过程 所带参数
    转 C#多线程及控制线程数量,对for循环输出效率
  • 原文地址:https://www.cnblogs.com/lucifer1997/p/14610052.html
Copyright © 2011-2022 走看看