numpy函数笔记
np.isin用法
np.isin(a,b)
用于判定a中的元素在b中是否出现过,如果出现过返回True,否则返回False,最终结果为一个形状和a一模一样的数组。(注意:这里的a和b是像数组类型就行,比如列表的话,传入进去之后,numpy会自动将其转化为numpy数组)- 但是当参数invert被设置为True时,情况恰好相反,如果a中元素在b中没有出现则返回True,如果出现了则返回False.
import numpy as np
# 这里使用reshape是为了验证是否对高维数组适用,返回一个和a形状一样的数组
a=np.array([1,3,7]).reshape(3,1)
b=np.arange(9).reshape(3,3)
# a 中的元素是否在b中,如果在b中显示True
Np_No_invert=np.isin(a, b, invert=False)
print("Np_No_invert
",Np_No_invert)
# a 中的元素是否在b中,如果设置了invert=True,则情况恰恰相反,即a中元素在b中则返回False
Np_invert=np.isin(a, b, invert=True)
print("Np_invert
",Np_invert)
# Np_No_invert
# [[ True]
# [ True]
# [ True]]
# Np_invert
# [[False]
# [False]
# [False]]
numpy.cumsum()
numpy.cumsum(a, axis=None, dtype=None, out=None)
axis=0,按照行累加。
axis=1,按照列累加。
axis不给定具体值,就把numpy数组当成一个一维数组。
注意这里的行和列和普通认为的不一样,只要认定为是往哪一个轴进行相加。
也就是按照指定维度进行相加
例子如下:
a
Out[6]:
array([[-0.94525613, -0.84632869, 0.65120093],
[ 0.11813225, 0.22240677, -1.6212242 ],
[-0.80511744, 1.04439191, -1.45651271]])
np.cumsum(a,1)
Out[8]:
array([[-0.94525613, -1.79158482, -1.14038389],
[ 0.11813225, 0.34053902, -1.28068518],
[-0.80511744, 0.23927446, -1.21723825]])
np.around 和np.round四舍五入
这两个函数的功能是一样的,np.round内部调用的就是np.around。
np.around 返回四舍五入后的值,可指定精度。
around(a, decimals=0, out=None)
a 输入数组
decimals 要舍入的小数位数。 默认值为0。 如果为负,整数将四舍五入到小数点左侧的位置
import numpy as np
n = np.array([-0.746, 4.6, 9.4, 7.447, 10.455, 11.555])
around1 = np.around(n)
print(around1) # [ -1. 5. 9. 7. 10. 12.]
around2 = np.around(n, decimals=1)
print(around2) # [ -0.7 4.6 9.4 7.4 10.5 11.6]
around3 = np.around(n, decimals=-1)
print(around3) # [ -0. 0. 10. 10. 10. 10.]
a=np.random.randn(3,3)
a
Out[6]:
array([[-0.94525613, -0.84632869, 0.65120093],
[ 0.11813225, 0.22240677, -1.6212242 ],
[-0.80511744, 1.04439191, -1.45651271]])
np.round(a,2)
Out[7]:
array([[-0.95, -0.85, 0.65],
[ 0.12, 0.22, -1.62],
[-0.81, 1.04, -1.46]])
np.floor 向下取整
np.floor 返回不大于输入参数的最大整数。 即对于输入值 x ,将返回最大的整数 i ,使得 i <= x。 注意在Python中,向下取整总是从 0 舍入。
import numpy as np
n = np.array([-1.7, -2.5, -0.2, 0.6, 1.2, 2.7, 11])
floor = np.floor(n)
print(floor) # [ -2. -3. -1. 0. 1. 2. 11.]
np.ceil 向上取整
np.ceil 函数返回输入值的上限,即对于输入 x ,返回最小的整数 i ,使得 i> = x。
import numpy as np
n = np.array([-1.7, -2.5, -0.2, 0.6, 1.2, 2.7, 11])
ceil = np.ceil(n)
print(ceil) # [ -1. -2. -0. 1. 2. 3. 11.]
NumPy中的diag函数
NumPy包中的内置diag函数很有意思。
假设创建一个1维数组a,和一个3*3数组b:
import numpy as np
a = np.arange(1, 4)
b = np.arange(1, 10).reshape(3, 3)
结果如下:
>>> a
array([1, 2, 3])
>>> b
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
使用diag函数,看一看结果:
>>> np.diag(a)
array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> np.diag(b)
array([1, 5, 9])
可以发现,当 np.diag(array) 中
array是一个1维数组时,结果形成一个以一维数组为对角线元素的矩阵
array是一个二维矩阵时,结果输出矩阵的对角线元素
np.set_printoptions函数
设置打印选项。也就是指定如何打印numpy数组,如何显示numpy数组。
这些选项确定浮点数、数组和其他 NumPy 对象的显示方式。
参数解释
-
precision:int 或无,可选
浮点输出的精度位数(默认 8)。如果浮点模式不是固定的,则可能是"无",以打印尽可能多的数字以唯一指定值。
-
threshold:int, 可选
触发汇总而不是完全 repr 的数组元素总数(默认 1000)。要始终使用完整重供而不汇总,请传递
sys.maxsize
。 -
edgeitems :int, 可选
每个维度的开头和末尾汇总中的数组项数(默认值 3)。
-
linewidth:int, 可选
用于插入换行符/行数(默认为 75)。
-
suppress :布尔, 可选
如果为 True,则始终使用固定点表示法打印浮点编号,在这种情况下,当前精度中等于零的数字将打印为零。如果 False,则当最小数字的绝对值为 < 1e-4 或最大绝对值与最小值的比率为 > 1e3 时,则使用科学表示法。默认值为 False。
-
nanstr: str,可选
浮点非数字(默认 nan)的字符串表示形式。
-
infstr :str, 可选
浮点无穷大的字符串表示形式(默认 inf)。
-
sign :字符串,"-","+"或"",可选
控制浮点类型的符号的打印。如果为"+",请始终打印正值的符号。如果 '',则始终在正值的符号位置打印空格(空白字符)。如果为"-",则省略正值的符号字符。(默认为"-")
-
formatter :调用的字典,可选
如果不是"无",则键应指示相应格式函数应用于的类型。可调用项应返回字符串。未指定的类型(由其相应的键)由默认格式器处理。可设置可处理的单个类型包括:
- "布尔"
- "int"
- "时间德尔塔" : a
numpy.timedelta64
- "日期时间": a
numpy.datetime64
- "浮动"
- "长浮":128位浮子
- "复杂漂浮"
- "长共体浮":由两个128位浮子组成
- "数字":类型和
numpy.string_``numpy.unicode_
- "对象":np.object_数组
- "str" : 所有其他字符串
可用于同时设置一组类型的其他键包括:
- "全部":设置所有类型
- "int_kind": 设置"int"
- "float_kind":设置"浮动"和"长浮"
- "complex_kind":设置"复杂浮"和"长复杂浮"
- "str_kind":设置"str"和"numpystr"
-
**floatmode : **str,可选
控制浮点类型的精度选项的解释。可以采取以下值(默认maxprec_equal):
-
"固定":始终打印精确分数数字,
即使这样打印的数字数会超过唯一指定值所需的数字。
-
"唯一":打印所需的最小小数数字
以唯一方式表示每个值。不同的元素可能具有不同的数字数。精度选项的值将被忽略。
-
"maxprec":以最精确的小数打印,但如果
元素可以唯一表示,数字较少,只能用这么多数字打印它。
-
"maxprec_equal":以最精确的小数打印,
但是,如果数组中的每个元素都可以以相同数量的较少数字的唯一表示,则所有元素都使用该数字。
-
官方文档例子
可以设置浮点精度:
>>>
>>> np.set_printoptions(precision=4)
>>> np.array([1.123456789])
[1.1235]
可以总结长数组:
>>>
>>> np.set_printoptions(threshold=5)
>>> np.arange(10)
array([0, 1, 2, ..., 7, 8, 9])
小结果可以抑制:
>>>
>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)
>>> x**2 - (x + eps)**2
array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)
>>> x**2 - (x + eps)**2
array([-0., -0., 0., 0.])
自定义格式可用于根据需要显示数组元素:
>>>
>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
>>> x = np.arange(3)
>>> x
array([int: 0, int: -1, int: -2])
>>> np.set_printoptions() # formatter gets reset
>>> x
array([0, 1, 2])
若要放回默认选项,可以使用:
>>>
>>> np.set_printoptions(edgeitems=3, infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)
此外,若要临时覆盖选项,请使用打印选项
作为上下文管理器:
>>>
>>> with np.printoptions(precision=2, suppress=True, threshold=5):
... np.linspace(0, 10, 10)
array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ])
np.vdot点积函数
矩阵点积为两个矩阵对应元素乘积之和
定义两个矩阵a和b
#定义两个矩阵
a=np.array([[4,3],[5,6]])
b=np.array([[10,11],[12,13]])
print("a")
print(a)
print("b")
print(b)
输出结果:
a
[[4 3]
[5 6]]
b
[[10 11]
[12 13]]
使用vdot函数计算a和b的点积
#矩阵点积 vdot函数,
#矩阵点积计算公式:两个矩阵对应位置元素乘积之和
c=np.vdot(a,b)
print("c")
print(c)
输出结果:
c
211
np.nonzero(a)
返回:数组a中非零元素的索引值数组
import numpy as np
a = np.random.uniform(-10, 10, 4)
print(a)
[ 2.69869382 -8.87937198 4.70100555 1.87901029]
b = np.nonzero(a)
print(b)
(array([0, 1, 2, 3], dtype=int64),)
#a是一维数组,有4个非零元素,返回4个非零元素的序号
a = [[0, 1, 1],
[1, 0, 1],
[1, 1, 0]]
print(a)
[[0, 1, 1], [1, 0, 1], [1, 1, 0]]
b = np.nonzero(a)
print(b)
(array([0, 0, 1, 1, 2, 2], dtype=int64), array([1, 2, 0, 2, 0, 1], dtype=int64))
#a是二维数组,array长度为6,即a有6个非零元素,第一个array是对非零元素的row描述,
#第二个array是对col的描述。索引元组b一直都是二维数组
print(np.transpose(b))
[[0 1]
[0 2]
[1 0]
[1 2]
[2 0]
[2 1]]
#调用transpose转置索引序号b元组,非零元素的序号[0,1],即第0行,第一列,以此类推。
np.amin(a,axis=k)
返回 :一维数组a中的最小值,二维数组需通过axis指定行或列,获取行或列的最小值,如不指定,则是所有元素的最小值
import numpy as np
a = [[0, 1, 2],
[1, 0, 3],
[1, 4, 0]]
a1 = np.asarray(a, dtype = np.float32)
print(a1[np.nonzero(a1)])
[ 1. 2. 1. 3. 1. 4.]
#使用a[np.nonzero(a)]获取a中所有非零值,变一维数组,但需要将a转换成array
print(np.amin(a1[np.nonzero(a1)]))
1.0
#获取数组的最小值
#把a1中等于0的值换成a1数组中的最小值
a1[a1==0] = np.amin(a1[np.nonzero(a1)])
print('a1 = ', a1)
a1 = [[ 1. 1. 2.]
[ 1. 1. 3.]
[ 1. 4. 1.]]
np.amax(a, axis=k)
返回:一维数组a中的最大值,二维数组需通过axis指定行或列,获取行或列的最大值,如不指定,则是所有元素的最大值
import numpy as np
a = [[1,4,7],
[2,5,8],
[3,6,9]]
b = np.amax(a, axis=0)
print(b)
b = [3,6,9]