class Solution {
public int[] searchRange(int[] nums, int target) {
int[] result = new int[]{-1, -1};
if (nums.length == 0) {
return result;
}
//假设先找左侧边界,然后再向右进行搜索
//这样时间复杂度可能不能达到logn,所以可以进行两次的边界查找,查找左边界和右边界
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
right = mid - 1;
} else if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid - 1;
}
}
if (left == nums.length || nums[left] != target) {
return result;
}
result[0] = left;
left++;
while (left < nums.length) {
if (nums[left] == target) {
left++;
} else {
break;
}
}
result[1] = left - 1;
return result;
}
}
对于执行两次二分查找的解题,需要将两种情况下的进行统一,避免写两个查找边界的代码块,LeetCode官方解法中给出了统一
- 找出左边界:第一个大于或者等于target的元素的下标
- 找出右边界:找出第一个大于target的元素的下标,然后减一就得到了右边界
class Solution {
public int[] searchRange(int[] nums, int target) {
int leftIdx = binarySearch(nums, target, true);
//注意这里的右边界需要减一
int rightIdx = binarySearch(nums, target, false) - 1;
if (leftIdx <= rightIdx && rightIdx < nums.length && nums[leftIdx] == target && nums[rightIdx] == target) {
return new int[]{leftIdx, rightIdx};
}
return new int[]{-1, -1};
}
public int binarySearch(int[] nums, int target, boolean lower) {
int left = 0, right = nums.length - 1, ans = nums.length;
//ans=nums.length是没有比target大的元素时(右边界+1)的情况
while (left <= right) {
int mid = (left + right) / 2;
if (nums[mid] > target || (lower && nums[mid] >= target)) {
right = mid - 1;
ans = mid;
} else {
left = mid + 1;
}
}
return ans;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/find-first-and-last-position-of-element-in-sorted-array/solution/zai-pai-xu-shu-zu-zhong-cha-zhao-yuan-su-de-di-3-4/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
注意:官方题解中Java版,最后判断左右边界两个下标时多余了一个判断nums[rightIdx] == target,当前面三个条件满足时,最后一个条件肯定满足
去掉 nums[rightIdx] == target