zoukankan      html  css  js  c++  java
  • 算法排序:归并排序

    一、归并排序基本思想

    归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。

    分而治之

    分解:将列表越分越小,直至分成一个元素。
    一个元素是有序的。
    合并:将两个有序列表归并,列表越来越大。

       可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n。

    二、合并相邻有序子序列过程

    三、归并排序代码

    1、一次归并代码

    def merge(li, low, mid, high):
        i = low    
    	j = mid + 1    
    	ltmp = []    
    	while i <= mid and j <= high:        
    		if li[i] <= li[j]:            
    			ltmp.append(li[i])            
    			i += 1        
    		else:            
    			ltmp.append(li[j])            
    			j += 1    
    	while i <= mid:        
    		ltmp.append(li[i])        
    		i += 1    
    	while j <= high:        
    		ltmp.append(li[j])        
    		j += 1    
    	li[low:high + 1] = ltmp

    2、归并排序

    def _merge_sort(li,low,high):
    	if low < high:#至少两个元素
    		mid = (low + high) // 2
    		_merge_sort(li,low,mid)
    		_merge_sort(li,mid+1,high)
    		#merage(li,low,mid,high)
    		print(li[low:high+1])

    四、归并排序过程打印

    1、归并排序归并过程

    1、归并排序之归并

    1、实现代码

    def merge(li, low, mid, high):
        i = low
        j = mid + 1
        ltmp = []
        while i<=mid and j<=high: # 只要左右两边都有数
            if li[i] < li[j]:
                ltmp.append(li[i])
                i += 1
            else:
                ltmp.append(li[j])
                j += 1
        # while执行完,肯定有一部分没数了
        while i <= mid:
            ltmp.append(li[i])
            i += 1
        while j <= high:
            ltmp.append(li[j])
            j += 1
        li[low:high+1] = ltmp
    
    li = [2,4,5,7,1,3,6,8]
    merge(li, 0, 3, 7)
    print(li)
    

    2、测试结果

    [1, 2, 3, 4, 5, 6, 7, 8]

    2、一次的完整归并

    1、实现代码

    def merge(li, low, mid, high):
        i = low
        j = mid + 1
        ltmp = []
        while i<=mid and j<=high: # 只要左右两边都有数
            if li[i] < li[j]:
                ltmp.append(li[i])
                i += 1
            else:
                ltmp.append(li[j])
                j += 1
        # while执行完,肯定有一部分没数了
        while i <= mid:
            ltmp.append(li[i])
            i += 1
        while j <= high:
            ltmp.append(li[j])
            j += 1
        li[low:high+1] = ltmp
    
    # li = [2,4,5,7,1,3,6,8]
    # merge(li, 0, 3, 7)
    # print(li)
    
    def merge_sort(li, low, high):
        if low < high: #至少有两个元素,递归
            mid = (low + high) //2
            merge_sort(li, low, mid)
            merge_sort(li, mid+1, high)
            merge(li, low, mid, high)
    
    
    li = list(range(20))
    import random
    random.shuffle(li)
    print(li)
    merge_sort(li, 0, len(li)-1)
    print(li)

    2、测试结果

    [1, 9, 10, 4, 0, 11, 18, 5, 7, 8, 17, 15, 19, 2, 14, 16, 6, 12, 13, 3]
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

    2、打印归并过程

    1、实现代码

    def merge(li, low, mid, high):
        i = low
        j = mid + 1
        ltmp = []
        while i<=mid and j<=high: # 只要左右两边都有数
            if li[i] < li[j]:
                ltmp.append(li[i])
                i += 1
            else:
                ltmp.append(li[j])
                j += 1
        # while执行完,肯定有一部分没数了
        while i <= mid:
            ltmp.append(li[i])
            i += 1
        while j <= high:
            ltmp.append(li[j])
            j += 1
        li[low:high+1] = ltmp
    
    
    def merge_sort(li, low, high):
        if low < high: #至少有两个元素,递归
            mid = (low + high) //2
            merge_sort(li, low, mid)
            merge_sort(li, mid+1, high)
            merge(li, low, mid, high)
            print(li[low:high+1])
    
    
    li = list(range(10))
    import random
    random.shuffle(li)
    print(li)
    merge_sort(li, 0, len(li)-1)
    print(li)

    2、range(20)测试结果

    [10, 6, 4, 18, 0, 12, 5, 15, 14, 17, 7, 8, 11, 13, 2, 1, 19, 3, 9, 16]
    [6, 10]
    [4, 6, 10]
    [0, 18]
    [0, 4, 6, 10, 18]
    [5, 12]
    [5, 12, 15]
    [14, 17]
    [5, 12, 14, 15, 17]
    [0, 4, 5, 6, 10, 12, 14, 15, 17, 18]
    [7, 8]
    [7, 8, 11]
    [2, 13]
    [2, 7, 8, 11, 13]
    [1, 19]
    [1, 3, 19]
    [9, 16]
    [1, 3, 9, 16, 19]
    [1, 2, 3, 7, 8, 9, 11, 13, 16, 19]
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

    3、range(10)测试结果

    [3, 1, 9, 5, 8, 7, 6, 4, 0, 2]
    [1, 3]
    [1, 3, 9]
    [5, 8]
    [1, 3, 5, 8, 9]
    [6, 7]
    [4, 6, 7]
    [0, 2]
    [0, 2, 4, 6, 7]
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

    五、归并排序性能分析

    六、快速排序、堆排序、归并排序-小结

  • 相关阅读:
    信息竞赛日志
    Lesson0423
    考试总结
    2020省队选拔前(4.13-5.31)计划
    mvcc浅析
    浅谈cgi和fastcgi
    mysql事务
    mysql慢sql优化总结
    简述缓存击穿 / 缓存雪崩 / 缓存穿透 以及各自的解决方案
    PHP的异常处理机制浅析
  • 原文地址:https://www.cnblogs.com/luoahong/p/9661769.html
Copyright © 2011-2022 走看看