zoukankan      html  css  js  c++  java
  • 【BZOJ 2138】stone

    Problem

    Description

    话说 (Nan) 在海边等人,预计还要等上 (M) 分钟。为了打发时间,他玩起了石子。

    (Nan) 搬来了 (N) 堆石子,编号为 (1)(N),每堆包含 (A_i) 颗石子。

    (1) 分钟,(Nan) 会在编号在 ([L_i, R_i]) 之间的石堆中挑出任意 (K_i) 颗扔向大海(好疼的玩法),如果 ([L_i, R_i]) 剩下石子不够 (K_i) 颗,则取尽量地多。为了保留扔石子的新鲜感,(Nan) 保证任意两个区间 ([L_i, R_i])([L_j, R_j]) ,不会存在 (L_ile L_j & R_jle R_i) 的情况,即任意两段区间不存在包含关系。

    可是,如果选择不当,可能无法扔出最多的石子,这时 (Nan) 就会不高兴了。所以他希望制定一个计划,他告诉你他 (m) 分钟打算扔的区间 ([L_i, R_i]) 以及 (K_i)

    现在他想你告诉他,在满足前 (i-1) 分钟都取到你回答的颗数的情况下,第 (i) 分钟最多能取多少个石子。

    Input Format

    第一行正整数 (N),表示石子的堆数;

    第二行正整数 (x,y,z,P),((1le x,y,zle N, Ple500))

    有等式 (A_i=[(i-x)^2+(i-y)^2+(i-z)^2] mod P)

    第三行正整数 (M) ,表示有 (M) 分钟;

    第四行正整数 (K_1,K_2,x,y,z,P),((x,y,zle1000,Ple10000))

    有等式 (K_i=(x*K_{i-1}+y*K_{i-2}+z)mod P)

    接下来 (M) 行,每行两个正整数 (L_i,R_i)

    (Nle40000, Mle N, 1le L_ile R_ile N, A_ile500)

    Output Format

    (M) 行,第 (i) 行表示第 (i) 分钟最多能取多少石子。

    Sample

    Input

    5
    3 2 4 7
    3
    2 5 2 6 4 9
    2 4
    1 2
    3 5
    

    Output

    2
    5
    5
    

    Explanation

    石子每堆个数分别为 (0,5,2,5,0)

    (1) 分钟,从第 (2) 到第 (4) 堆中选 (2) 个;

    (2) 分钟,从第 (1) 到第 (2) 堆中选 (5) 个;

    (3) 分钟,从第 (3) 到第 (5) 堆中选 (8) 个,但最多只能选 (5) 个。

    Algorithm

    线段树

    Mentality

    神奇题目。由于它要求的策略不针对整体,只需要局部最优,所以才有了解法。

    设当前处理到了第 (p) 个区间。

    (S_{i,j}) 为区间 ([i,j]) 里的石子数之和,设 (T_{i,j}) 为之前的,严格为 ([i,j]) 子区间的询问区间取的石子数之和。

    则在任一时刻,对于任意区间 ([l,r]) 都应该有 (T_{l,r}le S_{l,r}) ,毕竟拿的石子数总不能多于存在的。

    (s_i)([1,i]) 的石子数和,(Tl_i) 为之前的,左端点位于 ([1,i]) 的询问区间取的石子数之和,(Tr_i) 为之前的,右端点端点位于 ([1,i]) 的询问区间取的石子数之和。

    则可以用它们写成不等式:

    [T_{l,r}le S_{l,r}\ Tr_r-Tl_{l-1}le s_r-s_{l-1}\ s_{l-1}-Tl_{l-1}le s_r-Tr_r ]

    (g_i = s_{i - 1} - Tl_{i - 1}, f_i = s_i - Tr_i) ,则必须有 (g_lle f_r) 。对于一个区间而言,最多能取 (S_{l,r} - T_{l,r}=f_r-g_l) 个石子。

    考虑对于当前询问 (p) 而言,([L_p,R_p]) 的决策会影响到所有包含此区间的区间 (T) 值。为了满足 (forall T_{l,r}le S_{l,r}) ,则我们能选择的,最多的石子数应该是 (Min_{lin[1,L_p], rin [R_p, n]} S_{l,r} - T_{l,r}) ,然后和询问所需石子数 (K_p)(Min)

    由于 (S_{l,r} - T_{l,r}) 可以写成 (f_r-g_l) 的形式,所以每个询问的答案就可以写成 (Min_{iin[R_p,n]}f_i - Max_{iin[1,L_p]}g_i)

    用线段树维护即可。

    Code

    #include <algorithm>
    #include <cmath>
    #include <complex>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <map>
    #include <queue>
    #include <set>
    #include <vector>
    using namespace std;
    long long read() {
      long long x = 0, w = 1;
      char ch = getchar();
      while (!isdigit(ch)) w = ch == '-' ? -1 : 1, ch = getchar();
      while (isdigit(ch)) {
        x = (x << 3) + (x << 1) + ch - '0';
        ch = getchar();
      }
      return x * w;
    }
    #define ls (o << 1)
    #define rs ((o << 1) + 1)
    #define mid ((l + r) >> 1)
    const int Max_n = 4e4 + 5;
    int n, m, x, y, z, mod, Ans;
    int s[Max_n];
    int f[Max_n << 2], g[Max_n << 2], tagf[Max_n << 2], tagg[Max_n << 2];
    int L, R, ans;
    int ned[Max_n], ln, rn;
    bool fl;
    int sqr(int x) { return x * x; }
    void pushup(int *f, int o) {
      if (!fl)
        f[o] = min(f[ls], f[rs]);
      else
        f[o] = max(f[ls], f[rs]);
    }
    void pushdown(int *f, int *t, int o) {
      t[ls] += t[o], f[ls] += t[o];
      t[rs] += t[o], f[rs] += t[o];
      t[o] = 0;
    }
    void build(int *f, int o, int l, int r) {
      if (l == r) {
        if (!fl)
          f[o] = s[l];
        else
          if (l) f[o] = s[l - 1];
        return;
      }
      build(f, ls, l, mid);
      build(f, rs, mid + 1, r);
      pushup(f, o);
    }
    void query(int *f, int *t, int o, int l, int r) {
      if (L > R) return;
      if (l >= L && r <= R) {
        if (!fl)
          ans = min(ans, f[o]);
        else
          ans = max(ans, f[o]);
        return;
      }
      pushdown(f, t, o);
      if (mid >= L) query(f, t, ls, l, mid);
      if (mid < R) query(f, t, rs, mid + 1, r);
      pushup(f, o);
    }
    void add(int *f, int *t, int o, int l, int r) {
      if (L > R) return;
      if (l >= L && r <= R) {
        f[o] += ans, t[o] += ans;
        return;
      }
      pushdown(f, t, o);
      if (mid >= L) add(f, t, ls, l, mid);
      if (mid < R) add(f, t, rs, mid + 1, r);
      pushup(f, o);
    }
    int main() {
    #ifndef ONLINE_JUDGE
      freopen("2138.in", "r", stdin);
      freopen("2138.out", "w", stdout);
    #endif
      n = read(), x = read(), y = read(), z = read(), mod = read();
      for (int i = 1; i <= n; i++) {
        s[i] = (sqr(x - i) % mod + sqr(y - i) % mod + sqr(z - i) % mod) % mod;
        s[i] += s[i - 1];
      }
      fl = 0, build(f, 1, 0, n);
      fl = 1, build(g, 1, 0, n);
      m = read();
      ned[1] = read(), ned[2] = read();
      x = read(), y = read(), z = read(), mod = read();
      for (int i = 3; i <= m; i++)
        ned[i] = (x * ned[i - 1] % mod + y * ned[i - 2] % mod + z) % mod;
      for (int q = 1; q <= m; q++) {
        ln = read(), rn = read();
        ans = -2e9, fl = 1, L = 1, R = ln;
        query(g, tagg, 1, 0, n);
        Ans = -ans, ans = 2e9, fl = 0, L = rn, R = n;
        query(f, tagf, 1, 0, n);
        Ans = min(Ans + ans, ned[q]);
        printf("%d
    ", Ans);
        fl = 1, L = ln + 1, ans = -Ans;
        add(g, tagg, 1, 0, n);
        fl = 0, L = rn;
        add(f, tagf, 1, 0, n);
      }
    }
    
  • 相关阅读:
    格式化输出及基本运算符
    初识python
    项目: python爬虫 福利 煎蛋网妹子图
    mycat重启报错Failed to connect to the Wrapper at port解决方法
    使用nginx加zuul配置
    mycat登录报错Host 'XXX' is blocked because of many connection errors的另一种解决思路
    mycat查表报错Invalid DataSource:0解决方法
    《JUnit实战(第2版)》读书笔记
    博客园的博客积分与排名查看方法
    橄榄球教练不应兼任产品拥有者(译)
  • 原文地址:https://www.cnblogs.com/luoshuitianyi/p/11443382.html
Copyright © 2011-2022 走看看