/*
考虑对于询问分块, 每根号n个询问做一次
考虑一次询问, 我们建立出虚树来每条链上的更改一定是一样的, 然后会有根号条链
对于每条链上的点按照w基数排序并且合并相同, 然后每次更改 就是一个指针移动一格, 根号n次更改每次都要枚举一遍所有的链 所以是On的
总体Nsqrt(N)
比着 DOFYPXY 的代码打的
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#include<cmath>
#define ll long long
#define M 100010
#define mmp make_pair
using namespace std;
int read() {
int nm = 0;
char c = getchar();
for(; !isdigit(c); c = getchar());
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm;
}
int n, m, tote, dft, ans, t[M], q[M], r[M], deep[M], top[M], son[M], sz[M], u[M], st[M], id[M], key[M], dfn[M], fa[M];
const int biao = 600;
vector<int> to[M], buc[M << 1];
bool b[M];
void dfs(int now, int f) {
deep[now] = deep[f] + 1;
sz[now] = 1;
for(int i = 0; i < to[now].size(); i++) {
int vj = to[now][i];
dfs(vj, now);
if(sz[son[now]] < sz[vj]) son[now] = vj;
sz[now] += sz[vj];
}
}
void dfs(int now) {
dfn[now] = ++dft;
if(son[now]) {
top[son[now]] = top[now];
dfs(son[now]);
}
for(int i = 0; i < to[now].size(); i++) {
int vj = to[now][i];
if(vj == son[now]) continue;
top[vj] = vj;
dfs(vj);
}
}
int lca(int a, int b) {
while(top[a] != top[b]) {
if(deep[top[a]] < deep[top[b]]) swap(a, b);
a = fa[top[a]];
}
if(deep[a] > deep[b]) swap(a, b);
return a;
}
bool cmp(int a, int b) {
return dfn[a] < dfn[b];
}
int rec(int now) {
int a = b[now];
for(int i = 0; i < to[now].size(); i++) {
int vj = to[now][i];
a += rec(vj);
}
r[now] = t[now] - a;
return a;
}
#define pii pair<int, int>
struct Note {
int hd, pnt, sum, dx;
vector<pii> s;
void clear() {
hd = pnt = sum = dx = 0;
vector<pii>().swap(s);
}
} g[M];
void work(int L, int R) {
rec(1);
for(int i = L; i <= R; i++) u[i - L] = q[i];
sort(u, u + R - L + 1, cmp);
int tp = 1, num = 1;
st[1] = key[1] = 1;
for(int i = 0; i <= R - L; i++) {
int A = lca(u[i], st[tp]);
while(deep[A] < deep[st[tp]]) {
if(deep[st[tp - 1]] <= deep[A]) {
g[st[tp--]].hd = A;
if(st[tp] != A) st[++tp] = A, key[++num] = A;
break;
}
g[st[tp]].hd = st[tp - 1];
tp--;
}
if(st[tp] != u[i]) st[++tp] = u[i], key[++num] = u[i];
}
for(; tp > 1; tp--) g[st[tp]].hd = st[tp - 1];
memset(id, 0, sizeof(id));
for(int i = 1; i <= num; i++) {
for(int p = fa[key[i]]; p != g[key[i]].hd; p = fa[p]) {
id[p] = key[i];
}
}
for(int i = 0; i <= (n << 1); i++) vector<int>().swap(buc[i]);
for(int i = 1; i <= n; i++) if(!b[i]) buc[r[i] + n].push_back(i);
for(int i = 0; i <= (n << 1); i++) {
for(int j = 0; j < buc[i].size(); j++) {
if(id[buc[i][j]]) {
int o = id[buc[i][j]], ss = g[o].s.size();
if(ss && g[o].s[ss - 1].first == i - n) g[o].s[ss - 1].second++;
else g[o].s.push_back(mmp(i - n, 1));
}
}
}
for(int i = 1; i <= num; i++)
for(int k = key[i]; g[k].pnt < g[k].s.size() && g[k].s[g[k].pnt].first < 0; g[k].pnt++);
for(int i = L; i <= R; i++) {
b[q[i]] ^= 1;
if(b[q[i]]) {
if(r[q[i]] < 0) ans--;
r[q[i]]--;
for(int p = q[i]; g[p].hd;) {
g[p].dx--;
if(g[p].pnt < g[p].s.size() && g[p].s[g[p].pnt].first + g[p].dx < 0) ans += g[p].s[g[p].pnt].second, g[p].pnt++;
p = g[p].hd, r[p]--;
if(b[p] == 0 && r[p] == -1) ans++;
}
} else {
r[q[i]]++;
if(r[q[i]] < 0) ans++;
for(int p = q[i]; g[p].hd;) {
g[p].dx++;
if(g[p].pnt && g[p].s[g[p].pnt - 1].first + g[p].dx >= 0) g[p].pnt--, ans -= g[p].s[g[p].pnt].second;
p = g[p].hd, r[p]++;
if(b[p] == 0 && r[p] == 0) ans--;
}
}
cout << ans << ' ';
}
for(int i = 1; i <= num; i++) g[key[i]].clear();
}
int main() {
n = read(), m = read();
for(int i = 2; i <= n; i++) fa[i] = read(), to[fa[i]].push_back(i);
dfs(1, 0);
top[1] = 1;
dfs(1);
for(int i = 1; i <= n; i++) t[i] = read();
for(int i = 1; i <= m; i++) q[i] = read();
for(int i = 1; i <= m; i += biao) work(i, min(i + biao - 1, m));
return 0;
}