zoukankan      html  css  js  c++  java
  • 3*3卷积核实例

    (转)3x3 convolution kernels with online demo

    3x3 convolution kernels with online demo

    • Which are the most used 3x3 convolution kernels/matrices?
    • Which kernel is used for averaging, applying blur or smooth effect, do sharpening or for the emboss effect?
    • Which kernels can be used to detect edges, calculate the gradient or the smoothed gradient?
    • Can I try somewhere the two dimensional convolution in an interactive application?

    The frequently used 3x3 convolution kernels are listed below with some short description. At the end of this post there is an interactive demo, where you can try and play with different 3x3 kernels. For the mathematical background of the usage of these kernels, please read the previous post on two dimensional convolution.

    Average (blur, smooth) 3x3 convolution kernel

    This kernel is used for noise reduction and blurring the image. Must be normalized, otherwise the result may not fit the (0, 255) range.

    Sharpen 3x3 convolution kernel

    This kernel is used to enhance the small differences and edges in the image.

    Edge detection 3x3 convolution kernels

     

    These kernels are sensitive to the edges. Kernel E is for detecting in both directions, while EH and EV are sensitive for the horizontal and vertical edges respectively.

    Gradient detection 3x3 convolution kernels

    Kernels GH and GV are to calculate the magnitude of the horizontal and the vertical gradient.

    Sobel operator 3x3 convolution kernels

    Sobel operators are similar to the gradient kernels approximating the smoothed gradient of the image in horizontal and vertical directions. It can be seen from the decomposing, that this operator is a combination of a gradient detector and a smoothing kernel.

    Emboss 3x3 convolution kernel

     

    This kernel creates an embossing effect, can be rotated to modify the direction of this operator.

    Demo application

    This program demonstrates using 3x3 convolution kernels on classic image processing source images. Please click on the label to load the application. It shall run in every modern browser, including IE9+.

    Demo APP见原文



    You can use the currently filtered image as source by clicking the Use filtered image button. Some predefined kernels can be chosen, but values are directly selectable too. Setting Filter normalization divides the convolution result by the summary of the elements in the kernel. It is important to mention, that on the result image the absolute output values are shown.

  • 相关阅读:
    struts2知识系统整理
    JavaScript onload
    百度云如何为用户分配内存空间
    集合运算
    [hdu3530]单调队列
    [hdu4911]逆序对相关
    [hdu5199]统计数据的水题
    [hdu5200]离线+标记
    [hdu5204]水题
    [hdu5203]计数水题
  • 原文地址:https://www.cnblogs.com/lutingting/p/5188552.html
Copyright © 2011-2022 走看看