zoukankan      html  css  js  c++  java
  • 完全分布模式安装Hadoop

      典型的在一个集群中:NameNode部署在一台机器上,JobTracker部署在另一台机器上,作为主节点;其他的机器部署DataNode和TaskTracker,作为从节点。

      我的机子内存太小,只虚拟了三个Linux系统,NameNode和JobTracker部署在同一个机器上,作为主节点,另外两个部署DataNode和TaskTracker,作为从节点。

      主机名 IP
    主节点 h1 192.168.0.129
    从节点 h2 192.168.0.130
    从节点 h3 192.169.0.131

      

      1、各个节点配置

        1)确保各个机器的主机名和IP地址之间能够正常解析,修改/etc/hosts文件。

          如果该机器作为主节点,则需要在文件中添加集群中所有机器的IP及其对应的主机名;

          如果该机器作为从节点,则只需要在文件中添加本机的IP地址及其对应的主机名和主服务的IP的地址及其对应的主机名

          所有节点的/etc/hosts文件配置如下:

    [root@h1 ~]# vi /etc/hosts
    192.168.0.128 centoshadoop
    127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
    ::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
    192.168.0.129 h1
    192.168.0.130 h2
    192.168.0.131 h3

          关闭所有节点服务器的防火墙:

    [root@h1 ~]# service iptables stop

          关闭所有节点的selinux

    [root@h1 ~]# cat /etc/selinux/config
    
    # This file controls the state of SELinux on the system.
    # SELINUX= can take one of these three values:
    #     enforcing - SELinux security policy is enforced.
    #     permissive - SELinux prints warnings instead of enforcing.
    #     disabled - No SELinux policy is loaded.
    SELINUX=disabled
    # SELINUXTYPE= can take one of these two values:
    #     targeted - Targeted processes are protected,
    #     mls - Multi Level Security protection.
    SELINUXTYPE=targeted 

        2)在所有的机器上建立相同的用户 coder

    [root@h1 ~]# useradd coder
    [root@h1 ~]# passwd coder
    Changing password for user coder.
    New password: 
    BAD PASSWORD: it is based on a dictionary word
    Retype new password: 
    passwd: all authentication tokens updated successfully.
    [root@h1 ~]# 

        3)在所有节点的上以coder账号登陆,并进入到coder的主目录

    [coder@h1 ~]$ pwd
    /home/coder
    [coder@h1 ~]$ 

        4)SSH配置

          4.1)在所有节点上生成密钥对。

    [coder@h1 ~]$ ssh-keygen -t rsa
    Generating public/private rsa key pair.
    Enter file in which to save the key (/home/coder/.ssh/id_rsa): 
    Created directory '/home/coder/.ssh'.
    Enter passphrase (empty for no passphrase): 
    Enter same passphrase again: 
    Your identification has been saved in /home/coder/.ssh/id_rsa.
    Your public key has been saved in /home/coder/.ssh/id_rsa.pub.
    The key fingerprint is:
    29:1c:df:59:0d:5f:ee:28:07:c0:57:21:15:af:a3:88 coder@h1
    The key's randomart image is:
    +--[ RSA 2048]----+
    |         .. oo=o.|
    |          ...= + |
    |      .    .o o o|
    |     . o o o . + |
    |      o S o . = .|
    |       . . . + . |
    |        E . .    |
    |                 |
    |                 |
    +-----------------+
    [coder@h1 ~]$ 

          4.2)然后进入.ssh目录,把公钥复制到authorized_keys

    [coder@h1 ~]$ cd .ssh
    [coder@h1 .ssh]$ ls
    id_rsa  id_rsa.pub
    [coder@h1 .ssh]$ cp id_rsa.pub authorized_keys

          4.3)分发ssh公钥到各个节点,把authorized_keys的内容互相拷贝加入到各个节点的authorized_keys中,这样就可以免密码彼此ssh连入。

            可以使用scp命令把h2和h3节点的authorized_keys传送到h1主节点汇总成一个authorized_keys文件后再传送到各个节点

    [root@h2 .ssh]# scp authorized_keys h1:/softs

            汇总成一个文件可以使用cat authorized_keys >> /authorized_keys ,汇总完成后再把authorized_keys传回到各个节点相应的位置。

              最后合成的文件如下:

    [root@h1 .ssh]# cat authorized_keys
    ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAwVeTrgPPwMlI5l8cBVafmx3SSnDF/ad62xdJgnRFtzcBbwGpDcciAcPTLrjwbrodhDS/jWk1CIwQegPziHK94+Z9D9hGmyzJg3qRc9iH9tJF8BxZnsiM5zaXvU921mHdbQO/eeXGROvlX1VmkeoAZFXamzfPSXPL/ooyWxBvNiG8j8G4mxd2Cm/UpaaEI/C+gBB5hgerKJCCpyHudNuiqwz7SDZxIOOCU1hEG4xnMZJtbZg39QMPuLOYcodSMI3cGHb+zdwct62IxMMV/ZupQW2h5rXN0SmVTNDB5dsd5NIDCdsGEJU59ZSid2d71yek8iUk9t497cwZvKwrd7lVTw== coder@h1
    ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA8mrNyz17fHLzqyPWcmDhNwCu3iQPOS9gH4yK/10kNNu0Lly6G+OxzfB93+mfOQK2ejGjmYwNYKeSkDqyvHBw/A7Gyb+r2WZBlq/hNwrQsulUo57EUPLvF4g3cTlPAznhBGu4fFgSE7VXR1YZ6R0qUBwLRqvnZODhHzOklIH4Jasyc3oE1bHkEeixwo+V9MuwlnTLmy2R9HgixFCCzNQqiaIRgdi+/10FLQH18QGYTP2CQMpvtWoFXmOLL3VbHQXMlosfVYSXg3/wJA1X6KqYXrWkX5FAPMpeVyFl1OpHC+oH1SNf7FcVsAJ2E8QjQZ3UQxjN+wOzwe8AauLkyNhnbw== coder@h2
    ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAtQkOcpp9/s3v+jyX3T8jO7XiTqW0KxoUGl9ZdIcToish57tzJq1ajkKDMFDVBXXb8h3m+T9dPc6lhYtb1r6WBF6HB0fQ8Cwt8Sg6WxkhJDGhNzZTYL6U1rLWDLXQ6Y0NVub5mktu1ToDzHJw8GHri125b0RuRjwx12eo1kt0E3hP6DCEFtQfEyO/24dFOlbVTqF+/LT5HIA7lJFwlWZcRx0WrpB/w3lzQ3qKShAqo5MiCMJ7F5oEzgIeNcTQIqn4TJxci3NVG3VLga/MR2K9O2OZQjKhBUxMKPaZUlQefkbrxPBcKSfS1khqdAuXyTYfeSD0QPzrtSBxo9bLB7+urQ== coder@h3
    [root@h1 .ssh]# 

     

      2、安装、配置Hadoop文件

        1)把hadoop解压到 /home/coder/

        2)主节点上的配置

          2.1)hadoop-env.sh,找到 export JAVA_HOME,修改为JDK的安装路径

     export JAVA_HOME=/usr/java/jdk1.6.0_38

          2.1)core-site.xml,一定要配上namenode所在的主节点ip或者主机名

    [coder@h1 conf]$ vi core-site.xml
    <?xml version="1.0"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    
    <!-- Put site-specific property overrides in this file. -->
    
    <configuration>
            <property>
                    <name>fs.default.name</name>
                    <value>hdfs://192.168.0.129:9000</value>
            </property>
    </configuration>

          2.3)hdfs-site.xml,有两个从节点,数据复制的份数可以改成2

    <?xml version="1.0"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    
    <!-- Put site-specific property overrides in this file. -->
    
    <configuration>
            <property>
                    <name>dfs.replication</name>
                    <value>2</value>
            </property>
    </configuration>

          2.4)mapred-site.xml,改成JobTracker所在主节点的ip或者主机名

    <?xml version="1.0"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    
    <!-- Put site-specific property overrides in this file. -->
    
    <configuration>
            <property>
                    <name>mapred.job.tracker</name>
                    <value>192.168.0.129:9001</value>
            </property>
    </configuration>

          2.5)masters,修改为主节点的主机名,每个主机名一行。

    [coder@h1 conf]$ cat masters
    h1
    [coder@h1 conf]$

          2.6)slaves,加入所有的从节点主机名

    [coder@h1 conf]$ cat slaves
    h2
    h3
    [coder@h1 conf]$

        3)从节点上的配置

          把主节点上的已配置好的hadoop整个安装目录打包后复制到各个从节点中就行了,保持路径一致,用scp命令传输

      3、hadoop运行

        1)格式化文件系统,在主节点执行,进入hadoop安装根目录

    [coder@h1 hadoop-0.20.2]# bin/hadoop namenode -format
    [coder@h1 hadoop-0.20.2]$ bin/hadoop namenode -format
    13/03/27 23:03:59 INFO namenode.NameNode: STARTUP_MSG: 
    /******************************************************/************************************************************
    STARTUP_MSG: Starting NameNode
    STARTUP_MSG:   host = h1/192.168.0.129
    STARTUP_MSG:   args = [-format]
    STARTUP_MSG:   version = 0.20.2
    STARTUP_MSG:   build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.20 -r 911707; compiled by 'chrisdo' on Fri Feb 19 08:07:34 UTC 2010
    ************************************************************/
    13/03/27 23:04:00 INFO namenode.FSNamesystem: fsOwner=coder,coder
    13/03/27 23:04:00 INFO namenode.FSNamesystem: supergroup=supergroup
    13/03/27 23:04:00 INFO namenode.FSNamesystem: isPermissionEnabled=true
    13/03/27 23:04:00 INFO common.Storage: Image file of size 95 saved in 0 seconds.
    13/03/27 23:04:00 INFO common.Storage: Storage directory /tmp/hadoop-coder/dfs/name has been successfully formatted.
    13/03/27 23:04:00 INFO namenode.NameNode: SHUTDOWN_MSG: 
    /******************************************************/************************************************************
    SHUTDOWN_MSG: Shutting down NameNode at h1/192.168.0.129
    *********************************

         2)启动hadoop守护进程,在主节点上执行

    [coder@h1 hadoop-0.20.2]# bin/start-all.sh

        3)使用jps命令检测启动情况

          主节点上:

    [coder@h1 hadoop-0.20.2]$ jps
    2610 NameNode
    2843 Jps
    2736 SecondaryNameNode
    2775 JobTracker
    [coder@h1 hadoop-0.20.2]$

         从节点上:

    [coder@h2 conf]$ jps
    2748 DataNode
    2854 Jps
    2792 TaskTracker
    [coder@h2 conf]$

        4)hadoop启动成功。

    一些注意的地方:

    在使用scp命令传输的时候,可能是需要切换到root账号进行操作;

    在用root账号操作的文件,比如说传输authorized_keys文件,合并传输好之后最好把文件的所有者改回coder

      4、测试

        4.1)先建立一个文件夹,并在文件夹中建立两个文件。

    [coder@h1 ~]$ mkdir input
    [coder@h1 ~]$ cd input
    [coder@h1 input]$ echo "hey man" > test1.txt
    [coder@h1 input]$ echo "hey hadoop" > test2.txt
    [coder@h1 input]$ ls
    test1.txt  test2.txt
    [coder@h1 input]$ cat test1.txt
    hey man
    [coder@h1 input]$ cat test2.txt
    hey hadoop
    [coder@h1 input]$ 

        4.2)把刚才建立的文件夹放到hadoop文件系统中

    [coder@h1 hadoop-0.20.2]$ bin/hadoop dfs -put ../input in

        查看一下是否存放成功,检查hadoop文件系统中的in目录

    [coder@h1 hadoop-0.20.2]$ bin/hadoop dfs -ls ./in/*
    -rw-r--r--   2 coder supergroup          8 2013-03-28 21:28 /user/coder/in/test1.txt
    -rw-r--r--   2 coder supergroup         11 2013-03-28 21:28 /user/coder/in/test2.txt
    [coder@h1 hadoop-0.20.2]$ 

        4.3)运行hadoop自带的单词个数统计测试程序,把结果输出到out目录

    [coder@h1 hadoop-0.20.2]$ bin/hadoop jar hadoop-0.20.2-examples.jar wordcount in out
    13/03/28 21:34:47 INFO input.FileInputFormat: Total input paths to process : 2
    13/03/28 21:34:48 INFO mapred.JobClient: Running job: job_201303282119_0001
    13/03/28 21:34:49 INFO mapred.JobClient:  map 0% reduce 0%
    13/03/28 21:35:02 INFO mapred.JobClient:  map 50% reduce 0%
    13/03/28 21:35:08 INFO mapred.JobClient:  map 100% reduce 0%
    13/03/28 21:35:11 INFO mapred.JobClient:  map 100% reduce 16%
    13/03/28 21:35:20 INFO mapred.JobClient:  map 100% reduce 100%
    13/03/28 21:35:22 INFO mapred.JobClient: Job complete: job_201303282119_0001
    13/03/28 21:35:22 INFO mapred.JobClient: Counters: 17
    13/03/28 21:35:22 INFO mapred.JobClient:   Job Counters 
    13/03/28 21:35:22 INFO mapred.JobClient:     Launched reduce tasks=1
    13/03/28 21:35:22 INFO mapred.JobClient:     Launched map tasks=2
    13/03/28 21:35:22 INFO mapred.JobClient:     Data-local map tasks=2
    13/03/28 21:35:22 INFO mapred.JobClient:   FileSystemCounters
    13/03/28 21:35:22 INFO mapred.JobClient:     FILE_BYTES_READ=37
    13/03/28 21:35:22 INFO mapred.JobClient:     HDFS_BYTES_READ=19
    13/03/28 21:35:22 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=144
    13/03/28 21:35:22 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=23
    13/03/28 21:35:22 INFO mapred.JobClient:   Map-Reduce Framework
    13/03/28 21:35:22 INFO mapred.JobClient:     Reduce input groups=2
    13/03/28 21:35:22 INFO mapred.JobClient:     Combine output records=2
    13/03/28 21:35:22 INFO mapred.JobClient:     Map input records=2
    13/03/28 21:35:22 INFO mapred.JobClient:     Reduce shuffle bytes=43
    13/03/28 21:35:22 INFO mapred.JobClient:     Reduce output records=2
    13/03/28 21:35:22 INFO mapred.JobClient:     Spilled Records=4
    13/03/28 21:35:22 INFO mapred.JobClient:     Map output bytes=27
    13/03/28 21:35:22 INFO mapred.JobClient:     Combine input records=2
    13/03/28 21:35:22 INFO mapred.JobClient:     Map output records=2
    13/03/28 21:35:22 INFO mapred.JobClient:     Reduce input records=2
    [coder@h1 hadoop-0.20.2]$ 

        4.4)查看hadoop文件系统中out目录的内容

    [coder@h1 hadoop-0.20.2]$ bin/hadoop dfs -ls
    Found 2 items
    drwxr-xr-x   - coder supergroup          0 2013-03-28 21:28 /user/coder/in
    drwxr-xr-x   - coder supergroup          0 2013-03-28 21:35 /user/coder/out
    [coder@h1 hadoop-0.20.2]$ bin/hadoop dfs -ls ./out
    Found 2 items
    drwxr-xr-x   - coder supergroup          0 2013-03-28 21:34 /user/coder/out/_logs
    -rw-r--r--   2 coder supergroup         23 2013-03-28 21:35 /user/coder/out/part-r-00000
    [coder@h1 hadoop-0.20.2]$ bin/hadoop dfs -cat ./out/*
    hadoop  1
    hey   2
    man 1 cat: Source must be a file. [coder@h1 hadoop-0.20.2]$

        4.5)可以通过浏览器访问JobTracker节点的50030端口监控JobTracker

      

        4.6)可以通过浏览器访问NameNode节点的50070端口监控集群

  • 相关阅读:
    linux 文件系统基本结构
    linux bash命令行基本操作
    U盘安装Centos6.2
    linux安装JDK
    linux重启和关闭系统命令
    eclipse安装反编译工具JadClipse
    Linux系统 Centos6 安装
    Linux 发展史
    计算机硬件
    网络 、osi 七层模型、tcp/ip 五层参考
  • 原文地址:https://www.cnblogs.com/luxh/p/2877386.html
Copyright © 2011-2022 走看看