zoukankan      html  css  js  c++  java
  • python多进程详解

    python多进程

    序.multiprocessing

    python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

    一、Process

    process介绍

    • 创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。

    • 方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。

    • 属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。

    例1.1:创建函数并将其作为单个进程

    import multiprocessing
    import time
    
    def worker(interval):
        n = 5
        while n > 0:
            print("The time is {0}".format(time.ctime()))
            time.sleep(interval)
            n -= 1
    
    if __name__ == "__main__":
        p = multiprocessing.Process(target = worker, args = (3,))
        p.start()
        print("p.pid:", p.pid)
        print("p.name:", p.name)
        print("p.is_alive:", p.is_alive())
    
    ------------------------------------------------
    
    >>> p.pid: 1004
    >>> p.name: Process-1
    >>> p.is_alive: True
    >>> The time is Mon Jul 29 21:31:11 2019
    >>> The time is Mon Jul 29 21:31:14 2019
    >>> The time is Mon Jul 29 21:31:17 2019
    >>> The time is Mon Jul 29 21:31:20 2019
    >>> The time is Mon Jul 29 21:31:23 2019
    

    例1.2:创建函数并将其作为多个进程

    import multiprocessing
    import time
    
    def worker_1(interval):
        print("worker_1")
        time.sleep(interval)
        print("end worker_1")
    
    def worker_2(interval):
        print("worker_2")
        time.sleep(interval)
        print("end worker_2")
    
    def worker_3(interval):
        print("worker_3")
        time.sleep(interval)
        print("end worker_3")
    
    if __name__ == "__main__":
        p1 = multiprocessing.Process(target = worker_1, args = (2,))
        p2 = multiprocessing.Process(target = worker_2, args = (3,))
        p3 = multiprocessing.Process(target = worker_3, args = (4,))
    
        p1.start()
        p2.start()
        p3.start()
    
        print("The number of CPU is:" + str(multiprocessing.cpu_count()))
        for p in multiprocessing.active_children():
            print("child   p.name:" + p.name + "	p.id" + str(p.pid))
        print("END")
    
    ------------------------------------------------
    
    >>> The number of CPU is:8
    >>> child   p.name:Process-3	p.id18208
    >>> child   p.name:Process-2	p.id1404
    >>> child   p.name:Process-1	p.id11684
    >>> END
    >>> worker_1
    >>> worker_2
    >>> worker_3
    >>> end worker_1
    >>> end worker_2
    >>> end worker_3
    

    例1.3:将进程定义为类

    import multiprocessing
    import time
    
    class ClockProcess(multiprocessing.Process):
        def __init__(self, interval):
            multiprocessing.Process.__init__(self)
            self.interval = interval
    
        def run(self):
            n = 5
            while n > 0:
                print("the time is {0}".format(time.ctime()))
                time.sleep(self.interval)
                n -= 1
    
    if __name__ == '__main__':
        p = ClockProcess(3)
        p.start() 
    
    ------------------------------------------------
    
    >>> the time is Mon Jul 29 21:43:07 2019
    >>> the time is Mon Jul 29 21:43:10 2019
    >>> the time is Mon Jul 29 21:43:13 2019
    >>> the time is Mon Jul 29 21:43:16 2019
    >>> the time is Mon Jul 29 21:43:19 2019
    

    :进程p调用start()时,自动调用run()

    例1.4:daemon程序对比结果

    1.4-1 不加daemon属性

    import multiprocessing
    import time
    
    def worker(interval):
        print("work start:{0}".format(time.ctime()));
        time.sleep(interval)
        print("work end:{0}".format(time.ctime()));
    
    if __name__ == "__main__":
        p = multiprocessing.Process(target = worker, args = (3,))
        p.start()
        print("end!")
    
    ------------------------------------------------
    
    >>> end!
    >>> work start:Tue Jul 29 21:29:10 2019
    >>> work end:Tue Jul 29 21:29:13 2019
    

    1.4-2 加上daemon属性

    import multiprocessing
    import time
    
    def worker(interval):
        print("work start:{0}".format(time.ctime()));
        time.sleep(interval)
        print("work end:{0}".format(time.ctime()));
    
    if __name__ == "__main__":
        p = multiprocessing.Process(target = worker, args = (3,))
        p.daemon = True
        p.start()
        print("end!")
    
    ------------------------------------------------
    
    >>> end!
    

    :因子进程设置了daemon属性,主进程结束,它们就随着结束了。

    1.4-3 设置daemon执行完结束的方法

    import multiprocessing
    import time
    
    def worker(interval):
        print("work start:{0}".format(time.ctime()));
        time.sleep(interval)
        print("work end:{0}".format(time.ctime()));
    
    if __name__ == "__main__":
        p = multiprocessing.Process(target = worker, args = (3,))
        p.daemon = True
        p.start()
        p.join()
        print("end!")
    
    ------------------------------------------------
    
    >>> work start:Tue Jul 29 22:16:32 2019
    >>> work end:Tue Jul 29 22:16:35 2019
    >>> end!
    

    二、Lock

    当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

    import multiprocessing
    import sys
    
    def worker_with(lock, f):
        with lock:
            fs = open(f, 'a+')
            n = 10
            while n > 1:
                fs.write("Lockd acquired via with
    ")
                n -= 1
            fs.close()
            
    def worker_no_with(lock, f):
        lock.acquire()
        try:
            fs = open(f, 'a+')
            n = 10
            while n > 1:
                fs.write("Lock acquired directly
    ")
                n -= 1
            fs.close()
        finally:
            lock.release()
        
    if __name__ == "__main__":
        lock = multiprocessing.Lock()
        f = "file.txt"
        w = multiprocessing.Process(target = worker_with, args=(lock, f))
        nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))
        w.start()
        nw.start()
        print("end")
    
    ------------------------------------------------
    
    >>> Lockd acquired via with
    >>> Lockd acquired via with
    >>> Lockd acquired via with
    >>> Lockd acquired via with
    >>> Lockd acquired via with
    >>> Lockd acquired via with
    >>> Lockd acquired via with
    >>> Lockd acquired via with
    >>> Lockd acquired via with
    >>> Lock acquired directly
    >>> Lock acquired directly
    >>> Lock acquired directly
    >>> Lock acquired directly
    >>> Lock acquired directly
    >>> Lock acquired directly
    >>> Lock acquired directly
    >>> Lock acquired directly
    >>> Lock acquired directly
    

    三、Semaphore

    Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。

    import multiprocessing
    import time
    
    def worker(s, i):
        s.acquire()
        print(multiprocessing.current_process().name + "acquire");
        time.sleep(i)
        print(multiprocessing.current_process().name + "release
    ");
        s.release()
    
    if __name__ == "__main__":
        s = multiprocessing.Semaphore(2)
        for i in range(5):
            p = multiprocessing.Process(target = worker, args=(s, i*2))
            p.start()
    
    ------------------------------------------------
    
    >>> Process-1acquire
    >>> Process-1release
    >>>  
    >>> Process-2acquire
    >>> Process-3acquire
    >>> Process-2release
    >>>  
    >>> Process-5acquire
    >>> Process-3release
    >>>  
    >>> Process-4acquire
    >>> Process-5release
    >>>  
    >>> Process-4release
    

    四、Event

    Event用来实现进程间同步通信。

    import multiprocessing
    import time
    
    def wait_for_event(e):
        print("wait_for_event: starting")
        e.wait()
        print("wairt_for_event: e.is_set()->" + str(e.is_set()))
    
    def wait_for_event_timeout(e, t):
        print("wait_for_event_timeout:starting")
        e.wait(t)
        print("wait_for_event_timeout:e.is_set->" + str(e.is_set()))
    
    if __name__ == "__main__":
        e = multiprocessing.Event()
        w1 = multiprocessing.Process(name = "block",
                target = wait_for_event,
                args = (e,))
    
        w2 = multiprocessing.Process(name = "non-block",
                target = wait_for_event_timeout,
                args = (e, 2))
        w1.start()
        w2.start()
    
        time.sleep(3)
    
        e.set()
        print("main: event is set")
    
    ------------------------------------------------
    
    >>> wait_for_event: starting
    >>> wait_for_event_timeout:starting
    >>> wait_for_event_timeout:e.is_set->False
    >>> main: event is set
    >>> wairt_for_event: e.is_set()->True
    

    五、Queue

    Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。

    get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:

    import multiprocessing
    
    def writer_proc(q):      
        try:         
            q.put(1, block = False) 
        except:         
            pass   
    
    def reader_proc(q):      
        try:         
            print(q.get(block = False))
        except:         
            pass
    
    if __name__ == "__main__":
        q = multiprocessing.Queue()
        writer = multiprocessing.Process(target=writer_proc, args=(q,))  
        writer.start()   
    
        reader = multiprocessing.Process(target=reader_proc, args=(q,))  
        reader.start()  
    
        reader.join()  
        writer.join()
    
    ------------------------------------------------
    
    >>> 1
    

    六、Pipe

    Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。

    send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。

    import multiprocessing
    import time
    
    def proc1(pipe):
        while True:
            for i in range(10000):
                print("send: %s" %(i))
                pipe.send(i)
                time.sleep(1)
    
    def proc2(pipe):
        while True:
            print("proc2 rev:", pipe.recv())
            time.sleep(1)
    
    def proc3(pipe):
        while True:
            print("PROC3 rev:", pipe.recv())
            time.sleep(1)
    
    if __name__ == "__main__":
        pipe = multiprocessing.Pipe()
        p1 = multiprocessing.Process(target=proc1, args=(pipe[0],))
        p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))
        # p3 = multiprocessing.Process(target=proc3, args=(pipe[1],))
    
        p1.start()
        p2.start()
        # p3.start()
    
        p1.join()
        p2.join()
        # p3.join()
    
    ------------------------------------------------
    
    >>> send: 0
    >>> roc2 rev: 0
    >>> send: 1
    >>> proc2 rev: 1
    >>> send: 2
    >>> proc2 rev: 2
    >>> send: 3
    >>> proc2 rev: 3
    >>> send: 4
    >>> proc2 rev: 4
    >>> send: 5
    >>> proc2 rev: 5
    >>> send: 6
    >>> proc2 rev: 6
    >>> send: 7
    >>> proc2 rev: 7
    >>> send: 8
    >>> proc2 rev: 8
         .
         .
         .
         .
         .
         .
    

    七、Pool

    在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
    Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

    例7.1:使用进程池(非阻塞)

    import multiprocessing
    import time
    
    def func(msg):
        print("msg:", msg)
        time.sleep(3)
        print("end")
    
    if __name__ == "__main__":
        pool = multiprocessing.Pool(processes = 3)
        for i in range(4):
            msg = "hello %d" %(i)
            pool.apply_async(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
    
        print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
        pool.close()
        pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
        print("Sub-process(es) done.")
    
    ------------------------------------------------
    
    >>> Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
    >>> msg: hello 0
    >>> msg: hello 1
    >>> msg: hello 2
    >>> end
    >>> msg: hello 3
    >>> end
    >>> end
    >>> end
    >>> Sub-process(es) done.
    

    函数解释:

    • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
    • close() 关闭pool,使其不在接受新的任务。
    • terminate() 结束工作进程,不在处理未完成的任务。
    • join() 主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

    执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

    例7.2:使用进程池(阻塞)

    import multiprocessing
    import time
    
    def func(msg):
        print("msg:", msg)
        time.sleep(3)
        print("end")
    
    if __name__ == "__main__":
        pool = multiprocessing.Pool(processes = 3)
        for i in range(4):
            msg = "hello %d" %(i)
            pool.apply(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
    
        print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
        pool.close()
        pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
        print("Sub-process(es) done.")
    
    ------------------------------------------------
    
    >>> msg: hello 0
    >>> end
    >>> msg: hello 1
    >>> end
    >>> msg: hello 2
    >>> end
    >>> msg: hello 3
    >>> end
    >>> Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
    >>> Sub-process(es) done.
    

    例7.3:使用进程池,并关注结果

    import multiprocessing
    import time
    
    def func(msg):
        print("msg:", msg)
        time.sleep(3)
        print("end")
        return "done" + msg
    
    if __name__ == "__main__":
        pool = multiprocessing.Pool(processes=4)
        result = []
        for i in range(3):
            msg = "hello %d" %(i)
            result.append(pool.apply_async(func, (msg, )))
        pool.close()
        pool.join()
        for res in result:
            print(":::", res.get())
        print("Sub-process(es) done.")
    
    ------------------------------------------------
    
    >>> msg: hello 0
    >>> msg: hello 1
    >>> msg: hello 2
    >>> end
    >>> end
    >>> end
    >>> ::: donehello 0
    >>> ::: donehello 1
    >>> ::: donehello 2
    >>> Sub-process(es) done.
    

    例7.4:使用多个进程池

    import multiprocessing
    import os, time, random
    
    
    def Lee():
        print("
    Run task Lee-%s" % (os.getpid()))  # os.getpid()获取当前的进程的ID
        start = time.time()
        time.sleep(random.random() * 10)  # random.random()随机生成0-1之间的小数
        end = time.time()
        print('Task Lee, runs %0.2f seconds.' % (end - start))
    
    
    def Marlon():
        print("
    Run task Marlon-%s" % (os.getpid()))
        start = time.time()
        time.sleep(random.random() * 40)
        end = time.time()
        print('Task Marlon runs %0.2f seconds.' % (end - start))
    
    
    def Allen():
        print("
    Run task Allen-%s" % (os.getpid()))
        start = time.time()
        time.sleep(random.random() * 30)
        end = time.time()
        print('Task Allen runs %0.2f seconds.' % (end - start))
    
    
    def Frank():
        print("
    Run task Frank-%s" % (os.getpid()))
        start = time.time()
        time.sleep(random.random() * 20)
        end = time.time()
        print('Task Frank runs %0.2f seconds.' % (end - start))
    
    
    if __name__ == '__main__':
        function_list = [Lee, Marlon, Allen, Frank]
        print("parent process %s" % (os.getpid()))
    
        pool = multiprocessing.Pool(4)
        for func in function_list:
            pool.apply_async(func)  # Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中
    
        print('Waiting for all subprocesses done...')
        pool.close()
        pool.join()  # 调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
        print('All subprocesses done.')
    
    ------------------------------------------------
    
    >>> parent process 9828
    >>> Waiting for all subprocesses done...
    >>> 
    >>> Run task Lee-12948
    >>> 
    >>> Run task Marlon-8948
    >>> 
    >>> Run task Allen-18124
    >>> 
    >>> Run task Frank-17404
    >>> Task Frank runs 3.42 seconds.
    >>> Task Lee, runs 6.69 seconds.
    >>> Task Allen runs 8.38 seconds.
    >>> Task Marlon runs 13.37 seconds.
    >>> All subprocesses done.
    
  • 相关阅读:
    SQL Server 索引的自动维护 <第十三篇>
    SQL Server 索引的图形界面操作 <第十二篇>
    python处理时间戳
    今天又犯了Java/Scala里面substring的错误
    新浪系统工程师笔试--shell
    把DEDE的在线文本编辑器换成Kindeditor不显示问题
    C语言 EOF是什么?
    Windows Server 2012 R2超级虚拟化之七 远程桌面服务的增强
    C++数据结构之最小生成树
    python sqlite 查询表的字段名 列名
  • 原文地址:https://www.cnblogs.com/luyuze95/p/11266951.html
Copyright © 2011-2022 走看看