zoukankan      html  css  js  c++  java
  • Oracle-通过创建索引加快SQL执行效率

    一、问题概述

    需求:客户反馈dg库执行SQL比主库慢一备,其实和上一个cache的案例是一个客户,但是场景不同,本次使用了cache,但是效果还是不理想,客户不开心,废话不多说。

    1) 客户执行一条sql,主库执行时间<<备库执行的时间;

    2)上前观察dg cache的情况,发现SQL涉及的对象不再cache中,多次查询也无法加载到cache中;

    3)观察为什么dg环境未进行cache,发现sql执行计划涉及的表全表扫描,event 直接路径读!

    4)会话层面禁用直接路径读,多次查询,发现sql性能提升不明显,并且不能在dg关闭直接路径读! 也就是说在cache中还是慢

    5)测试库进行创建索引测试,确认可以优化SQL提升速度;

    6)生产库创建索引,对比执行效率。

    二、问题分析

    1) 客户执行一条sql,主库执行时间<<备库执行的时间;

    set linesize 500
    set termout off
    alter session set statistics_level=all;
    alter session set current_schema=xx;  
    --exec sql
    select  /*+ gather_plan_statistics */ count(*)   from xx;
    select * from table(dbms_xplan.display_cursor(null,null,'ADVANCED ALLSTATS LAST PEEKED_BINDS'));
    SELECT STATEMENT 00:01:18.26   dg备库耗时 1分18s   主库15s
    相同执行计划!

    2)上前观察dg cache的情况,发现SQL涉及的对象不再cache中,多次查询也无法加载到cache中;

    SYS> select o.object_name,count(*) blocks
      from dba_objects o,v$bh bh
      where o.object_id=bh.objd and o.owner in ('xx')
      and o.object_name in('xx')
      group by o.object_name;
    
    OBJECT_NAME          BLOCKS
    ------------------------------------
    xx         1

    3)观察为什么dg环境未进行cache,发现sql执行计划涉及的表全表扫描,event 直接路径读!

    SQL>  select INST_ID,sid,serial#,USERNAME,STATUS,MACHINE,SQL_ID,EVENT,(sysdate-LOGON_TIME)*86400 as "s",
    LAST_CALL_ET from gv$session where status='ACTIVE' and username is not null; USERNAME SQL_ID EVENT ------------- -------------------- ---------- ----- xx cyqxx direct path read
    > alter table xx.xx cache;
    *
    ERROR at line 1:
    ORA-00604: error occurred at recursive SQL level 1
    ORA-16000: database open for read-only access

    4)会话层面禁用直接路径读,多次查询,发现sql性能提升不明显,并且不能在dg关闭直接路径读! 也就是说在cache中还是慢

    session 1>
    alter session set events '10949 trace name context forever'; 多次执行sql 可以参考 https://www.eygle.com/archives/2012/05/oracle_11g_direct_path_read.html

    SQL 执行效率从
    1分18s 降低到了22s
    但是无法实例级别关闭直接路径读, 这个方式目的是暂时禁用直接路径读,将sql涉及的表cache到内存中
    OBJECT_NAME          BLOCKS
    ------------------------------------
    xx                    497

    session 2>
    会话层面不禁用直接路径读,耗时24s !!! 直接路径读反而比走cache快2s!!!
    想办法让sql 执行的对象cache到buffer cache中,SQL 执行效率从1分18s 降低到了 24s !!! 客户不满意,主库sql执行15s !!!

    5)测试库进行创建索引测试,确认可以优化SQL提升速度;

    select  /*+ gather_plan_statistics */  6个列,
      (SELECT SUM(MMI.column_1) FROM tab3 MMI WHERE MMI.column_4=MR.column_3) TOTALMONEY
      FROM tab1 mr
         left join
              (select column_3, replace(to_char(wm_concat(column_4)), ',', '/') column_4 
                     FROM (select mr.column_3, mts.column_4  FROM tab2  mr, 
                                                                    tab3  mi,  
                                                                   tab4  mts  where mr.column_3 = mi.column_4 
                                                                                  and mts.column_5 = mi.column_6 
                                                                                  and mts.column_7 = mi.column_8
                                                                                    group by column_3,column_4)
                                                                                                     group by column_3)
                                                                                                   rm on mr.column_3 = rm.column_3 
                                                                                                                   where 1=1  ORDER BY MR.column_9 DESC ;
    select * from table(dbms_xplan.display_cursor(null,1,'ADVANCED ALLSTATS LAST PEEKED_BINDS'));
    Plan hash value: 3940027804
    -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    | Id  | Operation                 | Name                     | Starts | E-Rows |E-Bytes|E-Temp | Cost (%CPU)| E-Time   | A-Rows |   A-Time   | Buffers |  OMem |  1Mem | Used-Mem |
    -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT          |                          |      1 |        |       |       | 28078 (100)|          |  11024 |00:00:22.08 |    4601K|       |       |          |
    |   1 |  SORT AGGREGATE           |                          |  11024 |      1 |    21 |       |            |          |  11024 |00:00:18.04 |    4409K|       |       |          |
    |*  2 |   TABLE ACCESS FULL       | tab3                     |  11024 |      3 |    63 |       |   115   (1)| 00:00:02 |  29420 |00:00:18.00 |    4409K|       |       |          |
    |   3 |  SORT ORDER BY            |                          |      1 |  11024 |    22M|    28M| 28078   (1)| 00:05:37 |  11024 |00:00:22.08 |    4601K|  2320K|   704K| 2062K (0)|
    |*  4 |   HASH JOIN OUTER         |                          |      1 |  11024 |    22M|       | 23127   (1)| 00:04:38 |  11024 |00:00:03.96 |     192K|  2498K|  1081K| 2668K (0)|
    |   5 |    TABLE ACCESS FULL      | tab2                     |      1 |  11024 |  1388K|       |   120   (1)| 00:00:02 |  11024 |00:00:00.01 |     421 |       |       |          |
    |   6 |    VIEW                   |                          |      1 |  11024 |    21M|       | 23007   (1)| 00:04:37 |  11024 |00:00:03.89 |     191K|       |       |          |
    |   7 |     SORT GROUP BY         |                          |      1 |  11024 |   495K|       | 23007   (1)| 00:04:37 |  11024 |00:00:03.76 |     180K|  2037K|   712K| 1810K (0)|
    |   8 |      VIEW                 | VM_NWVW_0                |      1 |  29420 |  1321K|       | 23007   (1)| 00:04:37 |  15841 |00:00:01.93 |   48387 |       |       |          |
    |   9 |       HASH GROUP BY       |                          |      1 |  29420 |  4395K|  4624K| 23007   (1)| 00:04:37 |  15841 |00:00:01.93 |   48387 |  3001K|  1501K| 2975K (0)|
    |* 10 |        HASH JOIN          |                          |      1 |  29420 |  4395K|       | 22009   (1)| 00:04:25 |  29420 |00:00:01.90 |   48387 |  1741K|  1741K| 1966K (0)|
    |  11 |         TABLE ACCESS FULL | tab2                     |      1 |  11024 |   204K|       |   119   (0)| 00:00:02 |  11024 |00:00:00.01 |     420 |       |       |          |
    |* 12 |         HASH JOIN         |                          |      1 |  29420 |  3849K|  2392K| 21889   (1)| 00:04:23 |  29420 |00:00:01.87 |   47967 |  3944K|  1214K| 4635K (0)|
    |  13 |          TABLE ACCESS FULL| tab3                     |      1 |  29420 |  2039K|       |   115   (1)| 00:00:02 |  29420 |00:00:00.01 |     401 |       |       |          |
    |  14 |          TABLE ACCESS FULL| tab4 |                   1 |   2428K|   145M|       | 13012   (1)| 00:02:37 |   2428K|00:00:01.11 |   47566 |       |       |          |
    -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    
    (SELECT SUM(MMI.column_1) FROM tab3 MMI WHERE MMI.column_4=MR.column_3) 
     set timing on
    create index xx.xx on xx.tab3 (column_4,column_1) parallel 6 online; 
    alter index xx.xx parallel
    1;
    也就是说这个执行计划第二步骤,执行了11024次全表扫描,将这个步骤创建索引走索引,效果提升很明显了! 

    6)生产库创建索引,对比执行效率

    --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    | Id  | Operation                 | Name                     | Starts | E-Rows |E-Bytes|E-Temp | Cost (%CPU)| E-Time   | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem |
    --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT          |                          |      1 |        |       |       | 28078 (100)|          |  11024 |00:00:03.28 |     192K|    123 |       |       |          |
    |   1 |  SORT AGGREGATE           |                          |  11024 |      1 |    21 |       |            |          |  11024 |00:00:00.10 |     932 |    123 |       |       |          |
    |*  2 |   INDEX RANGE SCAN        | ind                      |  11024 |      3 |    63 |       |     2   (0)| 00:00:01 |  29420 |00:00:00.07 |     932 |    123 |       |       |          |
    |   3 |  SORT ORDER BY            |                          |      1 |  11024 |    22M|    28M| 28078   (1)| 00:05:37 |  11024 |00:00:03.28 |     192K|    123 |  2320K|   704K| 2062K (0)|
    |*  4 |   HASH JOIN OUTER         |                          |      1 |  11024 |    22M|       | 23127   (1)| 00:04:38 |  11024 |00:00:03.13 |     192K|      0 |  2498K|  1081K| 2673K (0)|
    |   5 |    TABLE ACCESS FULL      | tab2                     |      1 |  11024 |  1388K|       |   120   (1)| 00:00:02 |  11024 |00:00:00.01 |     420 |      0 |       |       |          |
    |   6 |    VIEW                   |                          |      1 |  11024 |    21M|       | 23007   (1)| 00:04:37 |  11024 |00:00:03.08 |     191K|      0 |       |       |          |
    |   7 |     SORT GROUP BY         |                          |      1 |  11024 |   495K|       | 23007   (1)| 00:04:37 |  11024 |00:00:02.96 |     180K|      0 |  2037K|   712K| 1810K (0)|
    |   8 |      VIEW                 | VM_NWVW_0                |      1 |  29420 |  1321K|       | 23007   (1)| 00:04:37 |  15841 |00:00:01.26 |   48385 |      0 |       |       |          |
    |   9 |       HASH GROUP BY       |                          |      1 |  29420 |  4395K|  4624K| 23007   (1)| 00:04:37 |  15841 |00:00:01.25 |   48385 |      0 |  3001K|  1501K| 2997K (0)|
    |* 10 |        HASH JOIN          |                          |      1 |  29420 |  4395K|       | 22009   (1)| 00:04:25 |  29420 |00:00:01.23 |   48385 |      0 |  1741K|  1741K| 1964K (0)|
    |  11 |         TABLE ACCESS FULL | tab2                     |      1 |  11024 |   204K|       |   119   (0)| 00:00:02 |  11024 |00:00:00.01 |     420 |      0 |       |       |          |
    |* 12 |         HASH JOIN         |                          |      1 |  29420 |  3849K|  2392K| 21889   (1)| 00:04:23 |  29420 |00:00:01.20 |   47965 |      0 |  3944K|  1214K| 4632K (0)|
    |  13 |          TABLE ACCESS FULL| tab3                     |      1 |  29420 |  2039K|       |   115   (1)| 00:00:02 |  29420 |00:00:00.01 |     400 |      0 |       |       |          |
    |  14 |          TABLE ACCESS FULL| tab4                     |      1 |  2428K |   145M|       | 13012   (1)| 00:02:37 |   2428K|00:00:00.51 |   47565 |      0 |       |       |          |
    --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    主库1s内,dg 3s;  比原来主库15s,dg 24s 降低了极大!  

     当然本例中,SQL存在很大的优化空间,本次只是使用索引,将sql执行消耗最大的问题处理了,SQL执行效率得到明显提升,满足客户需求。

  • 相关阅读:
    SQL Server 2000 Windows CE Edition 2.0
    VC中ADO连接SQLSERVER的几种标准方式?
    VS.net 2010 F#
    几何向量gcd+暴力枚举——cf552
    函数的调用规则(__cdecl,__stdcall,__fastcall,__pascal)
    ALE IDocBDOC和IDOC的区别
    ABAPHow to use MS Word as editot in SAPscript and Smart Forms
    BISAP BI的权限管理
    CONote 74486 INFO: Overview of consulting notes for COPA
    ABAP 3D Graphs with SAP
  • 原文地址:https://www.cnblogs.com/lvcha001/p/14682472.html
Copyright © 2011-2022 走看看