zoukankan      html  css  js  c++  java
  • 深度分享:面试阿里,字节跳动,美团90%会被问到的HashMap知识

    一,HashTable

    哈希表,它相比于hashMap结构简单点,它没有涉及红黑树,直接使用链表的方式解决哈希冲突。

    我们看它的字段,和hashMap差不多,使用table存放元素

    private transient Entry<?,?>[] table;
    private transient int count;
    private int threshold;
    private float loadFactor;
    private transient int modCount = 0;
    

      

    它没有常量字段,默认值是在构造方法里面直接体现的,我们看一下无参构造:

    public Hashtable() {
        this(11, 0.75f);
    }
    

      

    1.get()方法

    根据key获得value

    public synchronized V get(Object key) {
        Entry<?,?> tab[] = table;
    //计算下标
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
    //遍历查找,e=e.next
        for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return (V)e.value;
            }
        }
        return null;
    }
    

      

    2.put()方法

    与get()方法类似,也是遍历table,然后调用addEntry()实现添加。

    public synchronized V put(K key, V value) {
        if (value == null) {
            throw new NullPointerException();
        }
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> entry = (Entry<K,V>)tab[index];
    //如果已经存在,则覆盖,返回老的值
        for(; entry != null ; entry = entry.next) {
            if ((entry.hash == hash) && entry.key.equals(key)) {
                V old = entry.value;
                entry.value = value;
                return old;
            }
        }
    //不存在,直接添加
        addEntry(hash, key, value, index);
        return null;
    }
    

      

    addEntry()

    private void addEntry(int hash, K key, V value, int index) {
        modCount++;
        Entry<?,?> tab[] = table;
        if (count >= threshold) {    //大小超过阈值,要扩容
            // Rehash the table if the threshold is exceeded
            rehash();
            tab = table;
            hash = key.hashCode();
            index = (hash & 0x7FFFFFFF) % tab.length;
        }
    //添加
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>) tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
    }
    

      

    注意这里的手法,直接将新来的节点,放到头部,这样就可以不管后面是否存在节点,都不会出现问题

    protected Entry(int hash, K key, V value, Entry<K,V> next) {
        this.hash = hash;
        this.key =  key;
        this.value = value;
        this.next = next;
    }
    

      

    二,HashMap

    1.常量字段介绍

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 2的四次方,初始化默认的容量
    static final int MAXIMUM_CAPACITY = 1 << 30; 最大的容量值
    static final float DEFAULT_LOAD_FACTOR = 0.75f; //容量 负载因子,
    static final int TREEIFY_THRESHOLD = 8;        //链表转换为数的阈值
    static final int UNTREEIFY_THRESHOLD = 6;    //树转坏为链表的阈值
    static final int MIN_TREEIFY_CAPACITY = 64;    //桶中的数据采用红黑树存储时,整个table的最小容量
    

      

    字段:

    transient Node<K,V>[] table; //存储主干,节点数组
    transient Set<Map.Entry<K,V>> entrySet;
    transient int size;        //元素数量
    transient int modCount;        //修改次数
    //The next size value at which to resize (capacity * load factor).
    int threshold;  //下一次扩容的大小,
    final float loadFactor;    //负载因子
    

      

    2.构造函数

    2.1常用的无参构造:

    默认构造方法,就直接给负载因子赋值,其他没有操作,其他字段都是默认的。

    // Constructs an empty <tt>HashMap</tt> with the default initial 
    // capacity (16) and the default load factor (0.75).
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    

      

    2.2带初始化容器大小,和负载因子的构造方法:

    首先要判断传入参数的正确性,然后赋值。

    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
    

      

    2.3带集合的构造方法:

    传入一个Map集合,调用put方法进行初始化。

    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
    

      

    从上面的代码中可以看到,在构造方法中并没有初始化table,具体的table初始化是在put操作上进行的。

    3.添加

    3.1 put()

    是一个入口方法,实际调用的是putVal()方法,其中通过hash()方法计算了key对应的 值

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    //异或运算,保证存储位置尽量均匀分布。
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    

      

    具体的putVal()方法,内容很长

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;  //变量初始化,n表示table的长度
        if ((tab = table) == null || (n = tab.length) == 0)    //容器初始化
            n = (tab = resize()).length;            //通过resize()方法获取分配空间。
        if ((p = tab[i = (n - 1) & hash]) == null)    //如果新的位置是空的,则直接放入,否者要解决冲突
            tab[i] = newNode(hash, key, value, null);        //将value封装成新的node
        else {    //解决冲突
            Node<K,V> e; K k;
            // 注意p的赋值在 第二个if里面,它表示的是冲突位置所存放的节点。如果新传入的节点和当前node的hash和key相同,则下面再处理
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)    //基于红黑树的插入
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {        //基于链表的插入
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
                //更新当前传入的值到当前node中。返回之前的oldValue
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;    //修改次数+1,
        if (++size > threshold)    //空间大小,如果超过了阈值,要扩容
            resize();
        afterNodeInsertion(evict);
        return null;
    }
    

      

    其中涉及的重点方法:resize()方法,返回新分配的空间。

    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;//获取老的table空间
        int oldCap = (oldTab == null) ? 0 : oldTab.length; //获取老的容量
        int oldThr = threshold;    //获取老的阈值
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }    //扩容两倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold,构造函数指定了阈值
            newCap = oldThr;
        else {               // 第一次初始化 oldCap=0,oldThr=0
            newCap = DEFAULT_INITIAL_CAPACITY;    //默认大小,16
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);    //默认计算方法,16*0.75,12
        }
        if (newThr == 0) {    //初始化阈值
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;    //将新计算出来的值,赋值
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //重新分配空间。
        table = newTab;    //扩容后的空间赋值(此时,空间还是空的)
        if (oldTab != null) {    //如果老的空间,不是空的,那么需要元素转移
            for (int j = 0; j < oldCap; ++j) {    //遍历进行转移
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {    //将元数取出来
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
    

      

    4.Node结构

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;    //节点的hash值
        final K key;        //存入的key值
        V value;            //存放的值
        Node<K,V> next;    //下一个节点
    ....
    }
    

      

    注意hashMap和LinkedList的区别,后者是双向的,而hashMap中的Node是单向的。

    5.get()操作

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value; //代码内容在这里
    }
    

      

    调用getNode()方法,计算hash(key)值,通过Hash来获得node

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {
            //第一个 检测数组中的hash定位获得第一个Node
            if (first.hash == hash &&((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //第一个不是,那么就是后续节点中,可能是链表形式,可能是红黑树
            if ((e = first.next) != null) {
                if (first instanceof TreeNode) //如果是红黑树,通过getTreeNode()方法获得
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //链表形式,直接循环遍历获得。
                do {
                    if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
    

      

    链表形式的获取比较简单,红黑树的获得,我们放在下面红黑树单独进行介绍。

    三,TreeMap

    TreeMap和之前的两个map就不同了,它没有使用哈希表,而是直接使用红黑树解决,它的字段只保存了根节点

    private final Comparator<? super K> comparator; //排序比较器
    private transient Entry<K,V> root;    //根节点
    private transient int size = 0;
    private transient int modCount = 0;
    

      

    1.get()

    public V get(Object key) {
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }
    

      

    getEntry()

    final Entry<K,V> getEntry(Object key) {
        // Offload comparator-based version for sake of performance
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
            Comparable<? super K> k = (Comparable<? super K>) key;
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = k.compareTo(p.key);
            //左右分流
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }
    

      

    **2.put() **涉及红黑树的操作,所以代码比较长

    public V put(K key, V value) {
        Entry<K,V> t = root;
        if (t == null) {
            compare(key, key); // type (and possibly null) check
     
            root = new Entry<>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        else {
            if (key == null)
                throw new NullPointerException();
            @SuppressWarnings("unchecked")
                Comparable<? super K> k = (Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        Entry<K,V> e = new Entry<>(key, value, parent);
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
    }
    

      

    3.remove()

    public V remove(Object key) {
        Entry<K,V> p = getEntry(key);
        if (p == null)
            return null;
     
        V oldValue = p.value;
        deleteEntry(p);  //实际方法
        return oldValue;
    }
    

      

    总结:

    HashMap表现得更像TreeMap和HashTable的结合体。

    最后

    感谢你看到这里,看完有什么的不懂的可以在评论区问我,觉得文章对你有帮助的话记得给我点个赞,每天都会分享java相关技术文章或行业资讯,欢迎大家关注和转发文章!

  • 相关阅读:
    0100相同的树 Marathon
    0017电话号码的字母组合 Marathon
    0236二叉树的最近公共祖先 Marathon
    1365有多少小于当前数字的数字 Marathon
    0701二叉搜索树的插入操作 Marathon
    0538二叉搜索树转为累加树 Marathon
    0039组合总和 Marathon
    0098验证二叉搜索树 Marathon
    0700二叉搜索树中的搜索 Marathon
    0108有序数组转为二叉搜索树 Marathon
  • 原文地址:https://www.cnblogs.com/lwh1019/p/13397329.html
Copyright © 2011-2022 走看看