zoukankan      html  css  js  c++  java
  • HDU6532 Chessboard (最大费用流)

    题意:棋盘上有n个棋子 每个棋子都有收益

       现在给定1e5条线 有横着的 竖着的

       规定只能在线的一侧选最多ki个棋子

       问最大收益

    题解:写自闭的一道题 很容易想到是网络流 但是建图有点难

       第一道最大费用流 居然是边权取反 跑最小费用最大流!

       先离散化坐标 然后可以用点代替一条横线 一条竖线

       如果x,y有一个棋子 就将x所在的横线 向y所在的竖线连一个权值为1 收益为花费的边

       这里要跑最大收益 所以收益要取反

       同时从小到大的每相邻两个横线之间连一条收益为0 边权为x较小的点所受限制条件

       竖线之间也连一条收益为0 边权为y较大的点所受限制条件

       好像越扯越复杂了...  总之就是直接上图吧 

       左边表示x = 1, x = 2, x = 3三条线 右边表示y = 1, y = 2 两条线

      

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int INF = 0x3f3f3f3f;
    int n, m, s, t, cnt, maxflow;
    ll mincost;
    int cntx, cnty;
    int xid[505];
    int yid[505];
    int kx[505];
    int ky[505];
    
    struct po {
        int x, y, id;
        int tx, ty;
    }q[505];
    
    bool cmp1(po A, po B) {return A.x < B.x;}
    bool cmp2(po A, po B) {return A.y < B.y;}
    bool cmp3(po A, po B) {return A.id < B.id;}
    
    int findx(int x) {
        if(x <= xid[1]) return 1;
        if(x > xid[cntx]) return -1;
        int l = 2, r = cntx;
        int mid = l + r >> 1;
        while(l + 1 < r) {
            mid = l + r >> 1;
            if(x >= xid[mid]) l = mid;
            else r = mid;
        }
        if(x <= xid[l]) return l;
        else return r;
    }
    
    int findy(int y) {
        if(y <= yid[1]) return 1;
        if(y > yid[cnty]) return -1;
        int l = 2, r = cnty;
        int mid = l + r >> 1;
        while(l + 1 < r) {
            mid = l + r >> 1;
            if(y >= yid[mid]) l = mid;
            else r = mid;
        }
        if(y <= yid[l]) return l;
        else return r;
    }
    
    struct node {
        int to, nex, val, cost;
    }E[100005];
    int head[1005];
    int cur[1005];
    
    void addedge(int x, int y, int va, int cos) {
        E[++cnt].to = y; E[cnt].nex = head[x]; head[x] = cnt; E[cnt].val = va; E[cnt].cost = cos;
        E[++cnt].to = x; E[cnt].nex = head[y]; head[y] = cnt; E[cnt].val = 0; E[cnt].cost = -cos;
    }
    
    int inque[1005];
    int dis[1005];
    int vis[1005];
    bool spfa() {
        for(int i = 1; i <= cntx + cnty + 2; i++) inque[i] = 0, dis[i] = INF, cur[i] = head[i];
        queue<int> que;
        que.push(s);
        dis[s] = 0, inque[s] = 1;
    
        while(!que.empty()) {
            int u = que.front();
            que.pop();
            inque[u] = 0;
    
            for(int i = head[u]; i; i = E[i].nex) {
                int v = E[i].to;
                if(E[i].val > 0 && dis[v] > dis[u] + E[i].cost) {
                    dis[v] = dis[u] + E[i].cost;
                    if(!inque[v]) {
                        inque[v] = 1;
                        que.push(v);
                    }
                }
            }
        }
        return dis[t] != INF;
    }
    
    int dfs(int x, int flow) {
        if(x == t) {
            vis[t] = 1;
            maxflow += flow;
            return flow;
        }
    
        vis[x] = 1;
        int used = 0;
        int rflow = 0;
        for(int i = cur[x]; i; i = E[i].nex) {
            cur[x] = i;
            int v = E[i].to;
            if(E[i].val > 0 && (!vis[v] || v == t) && dis[v] == dis[x] + E[i].cost) {
                if(rflow = dfs(v, min(flow - used, E[i].val))) {
                    used += rflow;
                    E[i].val -= rflow;
                    E[i ^ 1].val += rflow;
                    mincost += 1LL * E[i].cost * rflow;
                    if(used == flow) break;
                }
            }
        }
        return used;
    }
    
    void dinic() {
        maxflow = mincost = 0;
        while(spfa()) {
            vis[t] = 1;
            while(vis[t]) {
                memset(vis, 0, sizeof(vis));
                dfs(s, INF);
            }
        }
    }
    
    int main() {
    
        while(~scanf("%d", &n)) {
            cnt = 1;
            memset(kx, 0, sizeof(kx));
            memset(ky, 0, sizeof(ky));
            memset(head, 0, sizeof(head));
            cntx = cnty = 0;
            for(int i = 1; i <= n; i++) scanf("%d%d", &q[i].x, &q[i].y), q[i].id = i;
            q[0].x = q[0].y = 0;
            sort(q + 1, q + 1 + n, cmp1);
            for(int i = 1; i <= n; i++) {
                if(q[i].x != q[i - 1].x)
                    xid[++cntx] = q[i].x;
                q[i].tx = cntx;
            }
    
            sort(q + 1, q + 1 + n, cmp2);
            for(int i = 1; i <= n; i++) {
                if(q[i].y != q[i - 1].y)
                    yid[++cnty] = q[i].y;
                q[i].ty = cnty;
            }
            sort(q + 1, q + 1 + n, cmp3);
    
            scanf("%d", &m);
            for(int i = 1; i <= m; i++) {
                getchar();
                char a; int b, c;
                scanf("%c %d %d", &a, &b, &c);
                if(a == 'R') {
                    int tmp = findx(b);
                    if(tmp == -1) continue;
                    if(kx[tmp] == 0) kx[tmp] = c;
                    else kx[tmp] = min(kx[tmp], c);
                } else if(a == 'C') {
                    int tmp = findy(b);
                    if(tmp == -1) continue;
                    if(ky[tmp] == 0) ky[tmp] = c;
                    else ky[tmp] = min(ky[tmp], c);
                }
            }
    
            s = cntx + cnty + 1;
            t = s + 1;
            int lasx = n;
            for(int i = 1; i <= cntx; i++) {
                if(kx[i]) lasx = min(lasx, kx[i]);
                if(i == 1) addedge(s, i, lasx, 0);
                else addedge(i - 1, i, lasx, 0);
            }
    
            int lasy = n;
            for(int i = 1; i <= cnty; i++) {
                if(ky[i]) lasy = min(lasy, ky[i]);
                if(i == 1) addedge(cntx + i, t, lasy, 0);
                else addedge(cntx + i, cntx + i - 1, lasy, 0);
            }
            for(int i = 1; i <= n; i++) {
                addedge(q[i].tx, q[i].ty + cntx, 1, -q[i].id);
            }
    
            dinic();
            printf("%lld
    ", -mincost);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    asp.net 微信企业号办公系统-表单设计-标签(label)
    asp.net 微信企业号办公系统-表单设计-下拉列表
    asp.net 微信企业号办公系统-表单设计-隐藏域
    asp.net 微信企业号办公系统-表单设计-单选按钮组
    asp.net 微信企业号办公系统-表单设计-复选按钮组
    asp.net 微信企业号办公系统-表单设计-HTML编辑器
    asp.net 微信企业号办公系统-表单设计-文本域
    asp.net 微信企业号办公系统-表单设计-文本框
    asp.net 微信企业号办公系统-表单设计-新建表单(属性设置)
    原型与原型链的关系
  • 原文地址:https://www.cnblogs.com/lwqq3/p/11171932.html
Copyright © 2011-2022 走看看