zoukankan      html  css  js  c++  java
  • 【转】高方差与高偏差

    1.数据欠拟合会出现高偏差问题,比如数据的趋势是二次函数,用一次函数取拟合会出现高的偏差。

    2.数据过度的拟合会出现高方差问题,比如用10个数据特征去拟合9个数据会出现高的方差。

    3.怎么处理高偏差和高方差问题:

    高偏差:训练误差很大,训练误差与测试误差差距小,随着样本数据增多,训练误差增大。解决方法:

    1.寻找更好的特征(具有代表性的)

    2.用更多的特征(增大输入向量的维度)

    高方差:训练误差小,训练误差与测试误差差距大,可以通过增大样本集合来减小差距。随着样本数据增多,测试误差会减小。解决方案:

    1.增大数据集合(使用更多的数据)

    2.减少数据特征(减小数据维度)

                                                                                图1

    从图中可以看出当数据出现高方差即过拟合,随着训练集合增加,训练误差会随着增加,测试误差会随着减小,从图中可以看出,提供更多的数据可以减少测试误差与训练误差之间的差距。

                                                                          图2

    从图中2可以看出随着训练集合增加,测试误差会减少,但是减少到某个程度时,测试误差会持平,训练误差会增大。训练误差和测试误差会超过预期的误差值。

    一般采取判断某函数是高方差还是高偏差,简单的判断是看训练误差与测试误差的差距,差距大说明是高方差的,差距小说明是高偏差的。

  • 相关阅读:
    编程随想——从基础开始,顺其自然
    多个SSH私钥配置不当导致Git push 失败的分析及解决方法
    VPS配置记录
    COCI 2010.03.06 T5「PROGRAM」题解
    筛素数
    你的第一个程序--基本输入输出介绍,头文件介绍
    入门指北目录
    尺取法
    HAOI2006 (洛谷P2341)受欢迎的牛 题解
    c++并查集配合STL MAP的实现(洛谷P2814题解)
  • 原文地址:https://www.cnblogs.com/lxb0478/p/8472855.html
Copyright © 2011-2022 走看看