Validate Binary Search Tree
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what
"{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.分析:二叉搜索树的中序遍历是从小到大排列的。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { private: int pre; vector<int> vec; public: Solution():pre(LONG_MIN) {} bool isValidBST(TreeNode* root) { vec.clear(); if(root == NULL) return true; if(root->left==NULL && root->right==NULL) return true; isValid(root); for(int i=1; i<vec.size(); i++) if(vec[i-1] >= vec[i]) return false; return true; } void isValid(TreeNode* root) { if(root) { isValid(root->left); vec.push_back(root->val); isValid(root->right); } } };
方法二:设置上下界
class Solution { public: bool isValidBST(TreeNode* root) { if(root == NULL) return true; if(root->left==NULL && root->right==NULL) return true; return isValid(root, LONG_MIN, LONG_MAX); } bool isValid(TreeNode* root, int min, int max) { if(root==NULL) return true; if(root->val <= min || root->val >= max) return false; return isValid(root->left, min, root->val) && isValid(root->right, root->val, max); } };