zoukankan      html  css  js  c++  java
  • PLSA

    首先,回顾一元模型,然后引出贝叶斯学派的一元模型;

    如图示:


    一元模型中,不存在潜在主题,我们产生word的过程,相当于投骰子(V面);那么整个文档集的分布是:(文档直接独立,word之间独立)
    p(W)=∏dD∏iNp(wi)=∏dD∏vVp(wv)cv
    p(W)=∏dD∏iNp(wi)=∏dD∏vVp(wv)cv

    然后通过最大似然方法获得参数,p(wi)^=ciCp(wi)^=ciC,CC是总的頻数;
    混合一元模型:
    这里,我们假定,一篇文档有一个主题z,因此,
    p(W,z|d)=p(z|d)∏iNp(wi|z)p(W|d)=∑zp(z|d)∏iNp(wi|z)
    p(W,z|d)=p(z|d)∏iNp(wi|z)p(W|d)=∑zp(z|d)∏iNp(wi|z)
    以上频率学派思想,现在,利用贝叶斯学派思想,重新思考模型:
    现在有一个坛子,里面有无穷多个骰子(V面);现在,我们首先得抽取一个骰子,然后才能进行计算;我们假定选取过程是服从Dirichlet分布的(先验),因为我们知道,投骰子时,获得word的頻数是服从多项式分布的;这样后验概率也是Dirichlet分布;
    这里先验参数是θθ,那么
    p(W,θ)=p(θ)p(W|θ)p(W)=∫p(θ)p(W|θ)dθ=∫p(θ)∏p(wi|θ)dθ
    p(W,θ)=p(θ)p(W|θ)p(W)=∫p(θ)p(W|θ)dθ=∫p(θ)∏p(wi|θ)dθ
    我们回顾了基础知识;现在我们来分析一下PLSA模型,概率图模型如图C所示;可以看到,每一篇文档含有多个主题;;
    现在,我们生成文档的过程是:我们投骰子(K面,代表文档-主题概率)获得主题z,然后寻找到主题为z的那个主题-word骰子,然后投骰子获得word;
    即:
    p(wi|dm)=∑zp(wi|z)p(z|dm)p(W|dm)=∏iN∑zp(wi|z)p(z|dm)=∏iN∑zθwi,zϕdm
    p(wi|dm)=∑zp(wi|z)p(z|dm)p(W|dm)=∏iN∑zp(wi|z)p(z|dm)=∏iN∑zθwi,zϕdm
    这里可以使用EM算法,最大似然方法进行模型估计;

  • 相关阅读:
    swagger api 转graphql npm 包试用
    hasura graphql auth-webhook api 说明
    hasura graphql 角色访问控制
    hasura graphql schema 导出
    hasura graphql 模式拼接demo
    hasura graphql 模式拼接概念
    hasura graphql pg 自定义函数的使用
    gqlgen golang graphql server 基本试用
    nodejs json-t 基本测试
    json-patch 了解
  • 原文地址:https://www.cnblogs.com/lxt-/p/12150089.html
Copyright © 2011-2022 走看看