$f命题1:$设正项级数$sumlimits_{n = 1}^infty {{a_n}} $发散,且${s_n} = sumlimits_{k = 1}^n {{a_k}} $,试讨论级数$sumlimits_{n = 1}^infty {frac{{{a_n}}}{{{s_n}^alpha }}} $的敛散性
$f命题2:$设正项级数$sumlimits_{n = 1}^infty {{a_n}} $收敛,则存在发散到正无穷大的数列$left{ {{b_n}} ight}$,使得级数$sumlimits_{n = 1}^infty {{a_n}{b_n}} $仍收敛
$f命题:$设$sumlimits_{n = 1}^infty {{a_n}} $为收敛的正项级数,$left{ {n{a_n}} ight}$单调,证明:$lim limits_{n o infty } n{a_n}ln n = 0$
1 2 3
$f命题:$设${a_n} > 0,sumlimits_{n = 1}^infty {{a_n}} $收敛,证明:$sumlimits_{n = 1}^infty {frac{{{a_n}}}{{left( {n + 1} ight){a_{n + 1}}}}} $发散
1