zoukankan      html  css  js  c++  java
  • 关于函数项级数一致收敛的专题讨论

    $f命题:$设$f(x)$在[-1,1]上有连续的导函数,且$f(0)=0$

       $(1)$证明:$sumlimits_{n = 1}^infty  {frac{1}{n}fleft( {frac{x}{n}} ight)} $在[-1,1]上一致收敛

       $(2)$设$Sleft( x ight) = sumlimits_{n = 1}^infty  {frac{1}{n}fleft( {frac{x}{n}} ight)} $,证明:$Sleft( x ight)$在[-1,1]上连续可导

    1

    $f命题:$$f(14武大七)$设函数项级数$sumlimits_{n = 1}^infty  {frac{{{n^{n + 2}}}}{{{{left( {1 + nx} ight)}^n}}}} $,则

       $(1)$级数在$left( {1, + infty } ight)$上收敛

       $(2)$级数在$left( {1, + infty } ight)$上非一致收敛,但在$left( {1, + infty } ight)$上连续

    1

    $f命题:$$f(04大连理工)$设${u_n}left( x ight)left( {n = 1,2, cdots } ight)$在$[a,b]$上可微,$sumlimits_{n = 1}^infty  {{u_n}left( x ight)} $在${x_0} in left[ {a,b} ight]$处收敛,$sumlimits_{n = 1}^infty  {{u_n}^prime left( x ight)} $在$[a,b]$上一致收敛,证明:$sumlimits_{n = 1}^infty  {{u_n}left( x ight)} $在$[a,b]$上一致收敛

    1

    $f命题:$当$|x|<r$时,$sumlimits_{n = 0}^infty  {{a_n}{x^n}} $收敛于$f(x)$,证明:当${frac{{{a_n}}}{{n + 1}}{r^{n + 1}}}$收敛时,$int_0^r {fleft( x ight)dx}  = sumlimits_{n = 0}^infty  {frac{{{a_n}}}{{n + 1}}{r^{n + 1}}} $

    1

    $f命题:$$f(09武大九)$设${u_n}left( x ight) = frac{1}{{{n^3}}}ln left( {1 + {n^3}x} ight),n = 1,2, cdots $,记$Sleft( x ight) = sumlimits_{n = 1}^infty  {{u_n}left( x ight)} $

    (1)证明:$sumlimits_{n = 1}^infty  {{u_n}left( x ight)} $在$[0,b]$上一致收敛,而在$left( {0, + infty } ight)$上非一致收敛

    (2)讨论$S(x)$的可微性

    $f命题:$

    附录

    $f命题:$$(f{Bendixon判别法})$设$sumlimits_{n = 1}^infty {{u_n}left( x ight)} $为$left[ {a,b} ight]$上的可微函数项级数,且$sumlimits_{n = 1}^infty {{u_n}^prime left( x ight)} $的部分和函数列在$left[ {a,b} ight]$上一致有界

    证明:如果$sumlimits_{n = 1}^infty {{u_n}left( x ight)} $在$left[ {a,b} ight]$上收敛,则必在$left[ {a,b} ight]$上一致收敛

    1

    $f命题:$$(f{Dini定理})$设函数项级数$sumlimits_{n = 0}^infty {{u_n}left( x ight)} $的每一项及其和函数均在$left[ {a,b} ight]$上连续,且对每个$x in left[ {a,b} ight]$,

    有$sumlimits_{n = 0}^infty {{u_n}left( x ight)} $是正项级数或负项级数,则$sumlimits_{n = 0}^infty {{u_n}left( x ight)} $在$x in left[ {a,b} ight]$上一致收敛

    参考答案

  • 相关阅读:
    CodeForces 156B Suspects(枚举)
    CodeForces 156A Message(暴力)
    CodeForces 157B Trace
    CodeForces 157A Game Outcome
    HDU 3578 Greedy Tino(双塔DP)
    POJ 2609 Ferry Loading(双塔DP)
    Java 第十一届 蓝桥杯 省模拟赛 19000互质的个数
    Java 第十一届 蓝桥杯 省模拟赛 19000互质的个数
    Java 第十一届 蓝桥杯 省模拟赛 19000互质的个数
    Java 第十一届 蓝桥杯 省模拟赛十六进制转换成十进制
  • 原文地址:https://www.cnblogs.com/ly142857/p/3672882.html
Copyright © 2011-2022 走看看