zoukankan      html  css  js  c++  java
  • 关于幂等阵与幂幺阵的专题讨论

    幂等阵

    $f命题:$设$n$阶幂等阵$A$满足$A=A_{1}+cdots+A_{s}$,且$$r(A)=r(A_{1})+cdots+r(A_{s})$$

    证明:所有的$A_{i}$都相似于一个对角阵,且$A_{i}$的特征值之和等于$A_{i}$的秩

    1

    $f命题:$

    $f(10北科大八)$设线性空间$V$的线性变换$sigma$满足${sigma ^2} = sigma $,证明:

    (1)$V$中向量$eta$属于$sigma$的像集$ ext{Im}sigma$当且仅当$sigma (eta)=eta$

    (2)$V = operatorname{Im} sigma  oplus { ext{Ker}}sigma $,且$V$的任一向量的直和分解为$alpha  = sigma left( alpha   ight) + left( {alpha  - sigma left( alpha   ight)} ight)$

    (3)对任一直和分解$V = {V_1} oplus {V_2}$,存在唯一的幂等变换$sigma$,使得${V_1} = operatorname{Im} sigma ,{V_2}{ ext{ = Ker}}sigma $

    (4)每个幂等变换都有方阵表示$left( {egin{array}{*{20}{c}}E&0 \ 0&0 end{array}} ight)$

    幂幺阵

    $f命题:$设$A$为$n$阶对合阵,即${A^2} = E$,则存在正交阵$Q$,使得${Q^{ - 1}}AQ = left( {egin{array}{*{20}{c}}{{E_r}}&0 \ 0&{ - {E_{n - r}}}end{array}} ight)$ 

    1

    $f命题:$设${A^n} = {E_m}$,则$(E-A)x=0$的解空间的维数为$frac{1}{n}trleft( {A + {A^2} +  cdots  + {A^n}} ight)$

    1

    $f命题:$

    $f(06中科院)$设$f$为有限维向量空间$V$上的线性变换,且$f^n$是$V$上的恒等变换,这里$n$是某个正整数,设$W = { v in V|f(v) = v} $,证明:$W$是$V$的一个子空间,且其维数等于线性变换$left( {f + {f^2} +  cdots  + {f^n}} ight)/n$的迹

    1

    附录1(幂等阵)

    $f定义:$设$A$为$n$阶矩阵,若${A^2} = A$,则称$A$为幂等阵

    $f命题1:$若$A$为幂等阵,则${A^T},{A^k},E - A$均为幂等阵

     

    $f命题2:$幂等阵的特征值与行列式只能是$0$或$1$

     

    $f命题3:$设$A$是特征值全为$0$或$1$的方阵,则$A$为幂等阵的充要条件是$A$可对角化

     

    $f命题4:$$A$为幂等阵当且仅当$rleft( A ight) + rleft( {E - A} ight) = n$

     

    $f命题5:$$A$为幂等阵当且仅当${F^n} = Nleft( A ight) oplus Nleft( {E - A} ight)$

     

    $f命题6:$$A$为幂等阵当且仅当存在可逆阵$P$,使得${P^{ - 1}}AP = left( {egin{array}{*{20}{c}}{{E_r}}&0\0&0end{array}} ight),r = rleft( A ight)$

     

    $f命题7:$设$A$为秩为$r$的幂等阵,则$trleft( A ight) = rleft( A ight)$

     

    $f命题8:$设$A$为秩为$r$的幂等阵,则$left| {aE + bA} ight| = {left( {a + b} ight)^r}{a^{n - r}}$

     

    $f命题9:$任意幂等阵均可分解为对称阵与正定阵之积

    $f命题10:$设${A_1}, cdots ,{A_k}$均为$n$阶矩阵,$A = sumlimits_{i = 1}^k {{A_i}} $,则如下4条件中:

    [left( 1 ight),left( 2 ight) Leftrightarrow left( 1 ight),left( 3 ight) Leftrightarrow left( 3 ight),left( 4 ight) Leftrightarrow left( 2 ight),left( 3 ight)]

    $left( 1 ight){A_i}^2 = {A_i}left( {i = 1,2, cdots ,k} ight)$

    $left( 2 ight){A_i}{A_j} = 0left( {i e j} ight),rleft( {{A_i}^2} ight) = rleft( {{A_i}} ight)$

    $left( 3 ight){A^2} = A$

    $left( 4 ight)rleft( A ight) = sumlimits_{i = 1}^k {rleft( {{A_i}} ight)} $

    1

     

     

     

     

  • 相关阅读:
    关于lockkeyword
    关于多层for循环迭代的效率优化问题
    Android 面试精华题目总结
    Linux基础回想(1)——Linux系统概述
    linux源代码编译安装OpenCV
    校赛热身 Problem C. Sometimes Naive (状压dp)
    校赛热身 Problem C. Sometimes Naive (状压dp)
    校赛热身 Problem B. Matrix Fast Power
    校赛热身 Problem B. Matrix Fast Power
    集合的划分(递推)
  • 原文地址:https://www.cnblogs.com/ly142857/p/3725519.html
Copyright © 2011-2022 走看看