$f命题:$设$gleft( lambda ight)$为任意多项式,方阵$A$的最小多项式为$mleft( lambda ight)$,则$g(A)$可逆的充要条件是$left( {gleft( lambda ight),mleft( lambda ight)} ight) = 1$
$f命题:$设$A,B$分别为$m$阶与$n$阶矩阵,则矩阵方程$AX=XB$只有零解的充要条件是$A,B$无公共特征值
$f命题:$设$A$为$n$阶方阵,则$A$可逆当且仅当存在常数项不为零的多项式$f(lambda )$,使得$f(A)=0$
$f命题:$设$A in {M_n}left( F ight)$,$mleft( lambda ight),fleft( lambda ight)$分别为$A$的最小多项式与特征多项式,则存在正整数$t$,使得$fleft( lambda ight)|{m^t}left( lambda ight)$
$f命题:$$f(04浙大二)$设$A in {P^{n imes n}},fleft( x ight) in Pleft[ x ight],fleft( A ight)$,可逆,证明:存在$gleft( x ight) in Pleft[ x ight]$,使得${left( {fleft( A ight)} ight)^{ - 1}} = gleft( A ight)$
$f命题:$$f(06江苏九)$设$n$阶矩阵$A$的特征多项式为$f(lambda)$,且[left( {fleft( lambda ight),f'left( lambda ight)} ight) = dleft( lambda ight),hleft( lambda ight) = fleft( lambda ight)/dleft( lambda ight)]证明:$A$相似于对角阵的充要条件是$h(A)=0$
1
$f命题:$