zoukankan      html  css  js  c++  java
  • 768

    $f命题:$设$A$为$n$阶实对称阵,$alpha $为$n$维实向量,$left( {egin{array}{*{20}{c}}A&alpha \{{alpha ^T}}&1end{array}} ight)$为正定阵,证明:$A$正定且${alpha ^T}{A^{ - 1}}alpha < 1$

    证明:作合同变换
    [{ m{ }}left( {egin{array}{*{20}{c}}
    E&0\
    { - {alpha ^T}{A^{ - 1}}}&E
    end{array}} ight)left( {egin{array}{*{20}{c}}
    A&alpha \
    {{alpha ^T}}&1
    end{array}} ight)left( {egin{array}{*{20}{c}}
    E&{ - {A^{ - 1}}alpha }\
    0&E
    end{array}} ight) = left( {egin{array}{*{20}{c}}
    A&0\
    0&{1 - {alpha ^T}{A^{ - 1}}alpha }
    end{array}} ight)]
    而合同变换保持正定性,故$A$正定且${alpha ^T}{A^{ - 1}}alpha < 1$

    $f注:$由命题我们容易得出下面考研题

    $(03中科院七)$设$Q$为$n$阶正定阵,$x$为$n$维实向量,则${x^T}{left( {Q + x{x^T}} ight)^{ - 1}}x < 1$

  • 相关阅读:
    C语言运算符
    C语言的scanf函数
    C语言的数据、常量和变量
    js 操作样式属性
    点击图片显示或隐藏密码案例
    js 操作元素
    DOM 获取元素
    js 字符串对象
    js 数组
    js 倒计时 案例
  • 原文地址:https://www.cnblogs.com/ly758241/p/3706312.html
Copyright © 2011-2022 走看看